切换至 "中华医学电子期刊资源库"

中华诊断学电子杂志 ›› 2014, Vol. 02 ›› Issue (04) : 252 -257. doi: 10.3877/cma.j.issn.2095-655X.2014.04.003

所属专题: 文献

影像学诊断研究

电刺激健康成人小腿前外侧皮肤腰髓功能磁共振成像特征研究
贾岩龙1, 沈智威1, 聂婷婷1, 章桃1, 耿宽1, 吴仁华1,()   
  1. 1. 515041 汕头大学医学院第二附属医院放射科
  • 收稿日期:2014-06-23 出版日期:2014-11-26
  • 通信作者: 吴仁华
  • 基金资助:
    国家自然科学基金(30930027)

The characteristics of fMRI for lumbar spinal cord by electrically stimulating anterolateral legskin in healthy adults

Yanlong Jia1, Zhiwei Shen1, Tingting Nie1, Tao Zhang1, Kuan Gen1, Renhua Wu1,()   

  1. 1. Department of Medical Imaging, The Second Affilicated Hospital of Shantou University Medical College, Shantou 515041, China
  • Received:2014-06-23 Published:2014-11-26
  • Corresponding author: Renhua Wu
  • About author:
    Corresponding author: Wu Renhua, Email:
引用本文:

贾岩龙, 沈智威, 聂婷婷, 章桃, 耿宽, 吴仁华. 电刺激健康成人小腿前外侧皮肤腰髓功能磁共振成像特征研究[J]. 中华诊断学电子杂志, 2014, 02(04): 252-257.

Yanlong Jia, Zhiwei Shen, Tingting Nie, Tao Zhang, Kuan Gen, Renhua Wu. The characteristics of fMRI for lumbar spinal cord by electrically stimulating anterolateral legskin in healthy adults[J]. Chinese Journal of Diagnostics(Electronic Edition), 2014, 02(04): 252-257.

目的

通过基于快速自旋回波的功能磁共振序列,检测电刺激健康成人小腿前外侧皮肤时引起腰髓内神经元活动的激活特征;同时,对比横轴位与矢状位的激活信号特征,验证功能磁共振成像技术在腰髓方面研究的可行性及重复性。

方法

使用GE 1.5T Signa MR扫描仪及八通道标准脊髓(CTL)线圈用于发射和接受射频(RF)脉冲。12名健康志愿者,男性、女性各6名,年龄23~27岁,平均(25.00±1.13)岁。使用电针刺激仪,以断续脉冲(20Hz),刺激右侧小腿前外侧区皮肤,采用组块设计方法,即R1-S1-R2-S2-R3-S3-R4。利用单次激发快速自旋回波序列分别采集横轴位与矢状位的功能磁共振图像。使用SPM8软件获得静息态和刺激态图像差异间的t检验图,阈值P=0.01,设置激活聚类数为0。对矢状位不同脊椎节段内激活像素数及信号强度变化百分比改变使用非参数K相关样本分析法进行统计分析,用非参数Wilcoxon配对检验对矢状位-轴位上分别获取的数据进行统计学分析。

结果

除2名志愿者因运动幅度过大被排除外,余下10名志愿者相应脊髓节段内均检测到激活信号。矢状位上,激活信号主要位于T12(10/10)椎体水平,且信号强度变化百分比主要集中于0.0%~2.0%,T11(2/10)、L1(3/10)椎体水平亦检测到少许激活信号。横轴位上,激活信号主要位于刺激同侧脊髓灰质背侧区(7/10),对侧脊髓灰质背侧区(5/10)及双侧脊髓灰质腹侧区(3/10)也可观察到少许激活。T12椎体水平,横轴位与矢状位的平均激活像素数间比较(Z=-1.825,P>0.05)及横轴位与矢状位的平均信号强度变化百分比间比较(Z=-1.376,P>0.05)均差异无统计学意义。

结论

利用1.5T超导MR研究腰髓功能磁共振成像是可行的,且激活信号存在一定的特征,主要位于T12椎体水平,并具有一定的重复性;不同方位腰髓功能磁共振成像结果具有一致性。

Objective

To detect the characteristics of fMRI for lumbar spinal cord by stimulating anterolateral legs based on a fast spin echo sequence, and compare the differences of the activation signal between transverse and sagittal plane to determine the feasibility and repeatability of the functional magnetic resonance imaging (fMRI) for lumbar spinal cord.

Methods

GE1.5T Signa MR syetem was employed to transmit and receive RF pulse by using an eight-channel CTL coil.Twelve volunteers were stimulated by an electrical stimulator (intermittent pulse, frequency 20 HZ) on the anterolateral leg skin to detect fMRI activation signal.Spinal fMRI was acquired by a single-shot fast spin echo (SSFSE) sequence based on signal enhancement by the extra vascular water proton (SEEP) effect.Scanning parameters were as follows (sag/axial): TR=6 000 ms, TE=6.8/6.6 ms, thickness=4/7 mm, space=0.5 mm, FOV=24 cm×24 cm, parent=256×256, NEX=1, and ETL=64.Block design was used as the activation pattern, such as R1-S1-R2-S2-R3-S3-R4.The imaging data were analyzed with SPM8 and Marsbar.

Results

Activation signal of the lumbar spinal cord was found in all volunteers except for the data of two volunteers were taking off for their movements out of range.Time-intensity changes curves were correlated with periods of rest and active in both axial and sagittal views through the spinal cord.In the sagittal view, the activation was mainly located at the T12(10/10), and the signal intensity percentage varied from 0.0% to 2.0%.Few signal was also found at T11(2/10) and L1(3/10). In the axial view, the activation signal mainly focus on the ipsilateral dorsal horn (7/10), and few signal was also found at the contra-lateral dorsal horn (5/10) and bilateral ventral horn (3/10). At T12 vertebral level, there was no statistically significant difference in the average activation signal pixels and signal intensity changes between sagittl and transverse plane(Z=-1.825, Z=-1.376; P>0.05).

Conclusions

There are feasibilites of fMRI of lumbar spinal cord based on SEEP effect using 1.5T MR scanner, and the characterized activation signal was focused on the T12 with a high repeatability.Moreover, activation signal of axial lumber is consistent with that of sagittal lumber.

图1 健康成人相应脊髓节段内激活信号位置分布的磁共振成像特征
图2 健康成人脊髓内一处激活信号的磁共振成像与相关的时间-信号强度曲线
表1 不同脊椎节段内矢状位激活例数、平均激活像素及平均信号强度比较(±s)
[1]
Yoshizawa T, Nose T, Moore GJ,et al.Functional magnetic resonance imaging of motor activation in the human cervical spinal cord[J].NeuroImage,1996,4(3):174-182.
[2]
Harel NY, Strittmatter SM.Functional MRI and other non-invasive imaging technologies:Providing visual biomarkers for spinal cord structure and function after injury[J].Exp Neurol,2008,211(2):324-328.
[3]
陈业晞,沈智威,肖叶玉,等.电针刺激穴位的脊髓fMRI初步研究[J].磁共振成像,2010,1(6):438-441.
[4]
Stroman P, Tomanek B, Krause V,et al.Mapping of neuronal function in the healthy and injured human spinal cord with spinal fMRI[J].NeuroImage,2002,17(4):1854-1860.
[5]
Stroman P, Kornelsen J, Bergman A,et al.Noninvasive assessment of the injured human spinal cord by means of functional magnetic resonance imaging[J].Spinal cord,2004,42(2):59-66.
[6]
Kornelsen J, Stroman P.fMRI of the lumbar spinal cord during a lower limb motor task[J].Magn reson Med,2004,52(2):411-414.
[7]
Kornelsen J, Stroman P.Detection of the neuronal activity occurring caudal to the site of spinal cord injury that is elicited during lower limb movement tasks[J].Spinal cord,2007,45(7):485-490.
[8]
Cadotte D W, Stroman P, Bosma R,et al.Visualizing Plasticity and Altered Neuronal Signaling in the Injured Human Spinal Cord with fMRI[J].Neurosurgery,2012,71(2):558-566.
[9]
Smith S D, Kornelsen J.Emotion-dependent responses in spinal cord neurons: a spinal fMRI study[J].NeuroImage,2011,58(1): 269-274.
[10]
Xie G, Piché M, Khoshnejad M,et al.Reduction of physiological noise with independent component analysis improves the detection of nociceptive responses with fMRI of the human spinal cord[J].Neuroimage,2012,63(1):245-252.
[11]
Bosma RL, Stroman PW.Assessment of data acquisition parameters,and analysis techniques for noise reduction in spinal cord fMRI data[J].Magn Reson Imaging,2014,32(5):473-481.
[12]
Kornelsen J, Smith SD, McIver TA,et al.Functional MRI of the thoracic spinal cord during vibration sensation [J].J Magn Reson Imaging,2013,37(10):981-985.
[13]
Ghazni N, Cahill C, Stroman P.Tactile sensory and pain networks in the human spinal cord and brain stem mapped by means of functional MR imaging[J].Am J Neuroradiol,2010,31(4):661-667.
[14]
Noga B, Fortier P, Kriellaars D,et al.Field potential mapping of neurons in the lumbar spinal cord activated following stimulation of the mesencephalic locomotor region [J].J Neurosci,1995,15(3):2203-2217.
[15]
Stroman P, Krause V, Malisza K,et al.Extravascular proton-density changes as a non-BOLD component of contrast in fMRI of the human spinal cord[J].Magn Reson Med,2002,48(1):122-127.
[16]
Stroman P, Tomanek B, Krause V,et al.Functional magnetic resonance imaging of the human brain based on signal enhancement by extravascular protons (SEEP fMRI)[J].Magn Reson Med,2003,49(3):433-439.
[17]
Stroman P, Krause V, Frankenstein U,et al.Spin-echo versus gradient-echo fMRI with short echo times[J].Magn Reson Imaging,2001,19(6):827-831.
[18]
Zhao F, Williams M, Meng X,et al.BOLD and blood volume-weighted fMRI of rat lumbar spinal cord during non-noxious and noxious electrical hindpaw stimulation[J].NeuroImage,2008,40(1):133-147.
[19]
Malisza KL, Stroman PW, Turner A,et al.Functional MRI of the rat lumbar spinal cord involving painful stimulation and the effect of peripheral joint mobilization[J].J Magn Reson Imaging,2003,18(2):152-159.
[20]
Lawrence J, Stroman PW, Bascaramurty S,et al.Correlation of functional activation in the rat spinal cord with neuronal activation detected by immunohistochemistry[J].NeuroImage,2004,22(4):1802-1807.
[21]
Lilja J, Endo T, Hofstetter C,et al.Blood oxygenation level-dependent visualization of synaptic relay stations of sensory pathways along the neuroaxis in response to graded sensory stimulation of a limb[J].J Neurosci,2006,26(23):6330-6336.
[22]
Stroman P, Krause V, Malisza K,et al.Functional magnetic resonance imaging of the human cervical spinal cord with stimulation of different sensory dermatomes[J].Magn Reson Imaging,2002,20(1):1-6.
[23]
Stroman P, Krause V, Malisza K,et al.Characterization of contrast changes in functional MRI of the human spinal cord at 1.5 T[J].Magn Reson Imaging,2001,19(6):833-838.
[24]
Carusone LM, Srinivasan J, Gitelman DR,et al.Hemodynamic response changes in cerebrovascular disease: implications for functional MR imaging[J].Am J Neuroradiol,2002,23(7):1222-1228.
[25]
陈双庆,蔡庆,沈玉英,等.轻度认知功能损害患者扣带后回谷氨酸多体素氢质子磁共振波谱研究[J/CD].中华诊断学电子杂志,2013,1(1):36-39.
[1] 丁建民, 秦正义, 张翔, 周燕, 周洪雨, 王彦冬, 经翔. 超声造影与普美显磁共振成像对具有高危因素的≤3 cm肝结节进行LI-RADS分类诊断的前瞻性研究[J]. 中华医学超声杂志(电子版), 2023, 20(09): 930-938.
[2] 张莲莲, 惠品晶, 丁亚芳. 颈部血管超声在粥样硬化斑块易损性评估中的应用价值[J]. 中华医学超声杂志(电子版), 2023, 20(08): 816-821.
[3] 刘冰茹, 刘皓希, 陈莹, 赖世伟, 陈蓉. 疑似乳腺癌的韧带样纤维瘤病一例[J]. 中华乳腺病杂志(电子版), 2023, 17(05): 314-317.
[4] 叶艳娜, 叶瑞婷, 陈艳玲, 彭雯, 刘乐, 肖文秋, 黄辉, 李明深, 钟慕仪, 叶娴. 基于影像学表现和临床病理特征预测良性与交界性乳腺叶状肿瘤复发的列线图模型[J]. 中华乳腺病杂志(电子版), 2023, 17(04): 229-237.
[5] 董晓燕, 赵琪, 唐军, 张莉, 杨晓燕, 李姣. 奥密克戎变异株感染所致新型冠状病毒感染疾病新生儿的临床特征分析[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 595-603.
[6] 王楠楠, 刘文红, 孙立, 王婧. 脊髓损伤并发腹股沟嵌顿疝29例围手术期护理体会[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(04): 473-476.
[7] 韩宇, 张武, 李安琪, 陈文颖, 谢斯栋. MRI肝脏影像报告和数据系统对非肝硬化乙肝患者肝细胞癌的诊断价值[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 669-673.
[8] 雷漫诗, 邓锶锶, 汪昕蓉, 黄锦彬, 向青, 熊安妮, 孟占鳌. 人工智能辅助压缩感知技术在上腹部T2WI压脂序列中的应用[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 551-556.
[9] 刘卓, 段虎斌. 生物电相关疗法在神经损伤修复中的应用进展[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 257-260.
[10] 党圆圆, 赵虎林. 机器人辅助小脑齿状核脑深部电刺激植入术[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 320-320.
[11] 钟广俊, 刘春华, 朱万森, 徐晓雷, 王兆军. MRI联合不同扫描序列在胃癌术前分期诊断及化疗效果和预后的评估[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 378-382.
[12] 吴钰娴, 冯亚园, 霍雷, 贾宁阳, 张娟. 原发性肝脏淋巴瘤的影像学诊断价值研究[J]. 中华消化病与影像杂志(电子版), 2023, 13(05): 349-353.
[13] 冯海涛, 徐涛, 刘文阳, 孙晨, 曹尚超. 三维动脉自旋标记联合动态对比增强MRI对脑胶质瘤术后复发及放射性脑坏死诊断的研究[J]. 中华消化病与影像杂志(电子版), 2023, 13(04): 262-265.
[14] 王志文, 郑雪梅, 张庆坤, 王海江. 自发性低颅压综合征75例临床分析[J]. 中华临床医师杂志(电子版), 2023, 17(04): 398-401.
[15] 赵暾, 徐霁华, 何有娣, 鲁明. 误诊为脑梗死且险些溶栓的急性自发微量脑出血一例[J]. 中华脑血管病杂志(电子版), 2023, 17(04): 369-372.
阅读次数
全文


摘要