切换至 "中华医学电子期刊资源库"

中华诊断学电子杂志 ›› 2019, Vol. 07 ›› Issue (01) : 63 -65. doi: 10.3877/cma.j.issn.2095-655X.2019.01.013

所属专题: 文献

综述

蛋白质组学在帕金森病诊断中的研究进展
樊开阳1, 孙强2, 张瑜3, 卢丽丽4, 宋佳鑫4, 王兆京4, 马莉4,()   
  1. 1. 272029 济宁医学院附属医院医务处;116044 大连医科大学流行病教研室
    2. 272029 济宁医学院附属医院医务处
    3. 116021 大连市疾病预防控制中心
    4. 116044 大连医科大学流行病教研室
  • 收稿日期:2018-02-26 出版日期:2019-02-26
  • 通信作者: 马莉
  • 基金资助:
    国家自然科学基金(81200989)

Progress of proteomics in the diagnosis of Parkinson′s disease

Kaiyang Fan1, Qiang Sun2, Yu Zhang3, Lili Lu4, Jiaxin Song4, Zhaojing Wang4, Li Ma4,()   

  1. 1. Medical Service, the Affiliated Hospital of Jining Medical University, Jining 272029, China
    3. Dalian Center for Disease Control and Prevention, Dalian 116021, China
    4. Department of Epidemiology, Dalian Medical University, Dalian 116044, China
  • Received:2018-02-26 Published:2019-02-26
  • Corresponding author: Li Ma
  • About author:
    Corresponding author: Ma Li, Email:
引用本文:

樊开阳, 孙强, 张瑜, 卢丽丽, 宋佳鑫, 王兆京, 马莉. 蛋白质组学在帕金森病诊断中的研究进展[J]. 中华诊断学电子杂志, 2019, 07(01): 63-65.

Kaiyang Fan, Qiang Sun, Yu Zhang, Lili Lu, Jiaxin Song, Zhaojing Wang, Li Ma. Progress of proteomics in the diagnosis of Parkinson′s disease[J]. Chinese Journal of Diagnostics(Electronic Edition), 2019, 07(01): 63-65.

帕金森病是人类第二大神经退行性疾病,对于其发病机制目前尚不清楚,而运用蛋白质组学方法对该疾病进行研究,有助于对该疾病进行更加深入的了解,对探明其发病机制,寻找可靠的相关生物学标记物,开拓新的治疗方法具有重要意义。笔者主要从两个方面介绍蛋白质组学在帕金森病研究中的应用,一方面是通过获取患者本身的脑部组织和脑脊液进行蛋白研究,另一方面通过制作帕金森病动物模型获得需要的组织进行蛋白研究。

Parkinson′s disease is the second most common neurodegenerative disease in humans. The pathogenesis of Parkinson′s disease is currently unclear. Using proteomics approach to study the disease can help us to have a deeper understanding of the disease, and it is of great significance to explore its pathogenesis, to find reliable related biomarkers, and to develop new treatments. The author introduces the application of proteomics in the study of Parkinson′s disease from two aspects. On the one hand, the proteins is studies by acquiring the brain tissue and cerebrospinal fluid of the patients. On the other hand, the desired tissue is obtained for protein tissue research by making animal models of Parkinson′s disease.

[1]
Wirdefeldt K, Adami HO, Cole P,et al.Epidemiology and etiology of Parkinson′s disease:a review of the evidence[J].Eur J Epidemiol,2011,26(Suppl1):S1-S58.
[2]
Hirtz D, Thurman DJ, Gwinn-Hardy K,et al.How common are the " common" neurologic disorders[J].Neurology,2007,68(5):326-337.
[3]
中华医学会神经病学分会帕金森病及运动障碍学组.中国帕金森病治疗指南(第三版)[J].中华神经科杂志,2014,47(6):428-433.
[4]
刘疏影,陈彪.帕金森病流行现状[J].中国现代神经疾病杂志,2016,16(2):98-101.
[5]
Sharma S, Moon CS, Khogali A,et al.Biomarkers in Parkinson′s disease (recent update)[J].Neurochem Int,2013,63(3):201-229.
[6]
Pan S, Shi M, Jin J,et al.Proteomics identification of proteins in human cortex using multidimensional separations and MALDI tandem mass spectrometer[J].Mol Cell Proteomics,2007,6(10):1818-1823.
[7]
Fountoulakis M, Hardmeier R, Hoger H,et al.Postmortem changes in the level of brain proteins[J].Exp Neurol,2001,167(1):86-94.
[8]
Licker V, Kovari E, Hochstrasser DF,et al.Proteomics in human Parkinson′s disease research[J].J Proteomics,2009,73(1):10-29.
[9]
Basso M, Giraudo S, Corpillo D,et al.Proteome analysis of human substantia nigra in Parkinson's disease[J].Proteomics,2004,4(12):3943-3952.
[10]
Werner CJ, Heyny-von Haussen R, Mall G,et al.Proteome analysis of human substantia nigra in Parkinson's disease[J].Proteome Sci,2008 (6):8.
[11]
Shi M, Jin J, Wang Y, et al. Mortalin:a protein associated with progression of parkinson disease? [J].J Neuropathol Exp Neurol,2008,67(2):117-124.
[12]
陈涛,唐北沙,廖小平.α-突触核蛋白在帕金森病发病机制中的作用[J].中国神经科杂志,2006,39(6):415-418.
[13]
徐丽,曹学兵,孙圣刚,等.鱼藤酮诱导细胞内泛素化α-synuclein聚集选择性损伤多巴胺神经元[J].中国神经免疫学和神经病学杂志,2007(1):35-39.
[14]
Andersen AD, Binzer M, Stenager E, et al. Cerebrospinal fluid biomarkers for Parkinson′s disease-a systematic review[J].Acta Neurol Scand,2017,135(1):34-56.
[15]
Sinha A, Srivastava N, Singh S,et al.Identification of differentially displayed proteins in cerebrospinal fluid of Parkinson′s disease patients:a proteomic approach[J].Clin Chim Acta,2009,400(1/2):14-20.
[16]
Zhang X, Yin X, Yu H,et al.Quantitative proteomic analysis of serum proteins in patients with Parkinson′s disease using an isobaric tag for relative and absolute quantification labeling,two-dimensional liquid chromatography,and tandem mass spectrometry[J].Analyst,2012,137(2):490-495.
[17]
Hong Z, Shi M, Chung KA, et al. DJ-1 and alpha-synuclein in human cerebrospinal fluid as biomarkers of parkinson′s disease[J].Brain,2010,133(3):713-726.
[18]
Bonifati V, Rizzu P, Squitieri F,et al.DJ-1(PARK7),a novel gene for autosomal recessive,early onset parkinsonism[J].Neurol Sci,2003,24(3):159-160.
[19]
Taira T, Saito Y, Niki T,et al.DJ-1 has a role in antioxidative stress to prevent cell death[J].EMBO Rep,2004,5(2):213-218.
[20]
Shi M, Zabetian CP, Hancock AM,et al.Significance and confounders of peripheral DJ-1 and alpha-synuclein in Parkinson's disease[J].Neurosci Lett,2010,480(1):78-82.
[21]
Sowell RA, Owen JB, Butterfield DA.Proteomics in animal models of Alzheimer′s and Parkinson′s diseases[J].Ageing Res Rev,2009,8(1):1-17.
[22]
Waxman EA, Giasson BI.Molecular mechanisms of alpha-synuclein neurodegeneration[J].Biochim Biophys Acta,2009,1792(7):616-624.
[23]
Valastro B, Dekundy A, Krogh M,et al.Proteomic analysis of striatal proteins in the rat model of L-DOPA-induced dyskinesia[J].J Neurochem,2007,102(4):1395-1409.
[24]
Dawson TM, Dawson VL.Molecular pathways of neurodegeneration in parkinson's disease[J].Science,2003,302(5646):819-822.
[25]
Skold K, Svensson M, Nilsson A,et al.Decreased striatal levels of PEP-19 following MPTP lesion in the mouse[J].J Proteome Res,2006,5(2):262-269.
[26]
Putkey JA, Kleerekoper Q, Gaertner TR,et al.A new role for IQ motif proteins in regulating calmodulin function[J].J Biol Chem,2003,278(50):49667-49670.
[27]
McLaughlin P, Zhou Y, Ma T,et al.Proteomic analysis of microglial contribution to mouse strain-dependent dopaminergic neurotoxicity[J].Glia,2006,53(6):567-582.
[1] 魏淑婕, 惠品晶, 丁亚芳, 张白, 颜燕红, 周鹏, 黄亚波. 单侧颈内动脉闭塞患者行颞浅动脉-大脑中动脉搭桥术的脑血流动力学评估[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1046-1055.
[2] 刘欢颜, 华扬, 贾凌云, 赵新宇, 刘蓓蓓. 颈内动脉闭塞病变管腔结构和血流动力学特征分析[J]. 中华医学超声杂志(电子版), 2023, 20(08): 809-815.
[3] 王晗宇, 张司可, 张羽, 万欣, 贺秋霞, 李明明, 杨秀华. 超声造影在脑胶质瘤切除术术中的应用价值[J]. 中华医学超声杂志(电子版), 2023, 20(07): 755-760.
[4] 袁泽, 庄丽. 超声检测胎儿脐动脉和大脑中动脉血流对胎儿宫内窘迫的诊断价值[J]. 中华医学超声杂志(电子版), 2023, 20(06): 618-621.
[5] 朱泽超, 杨新宇, 李侑埕, 潘鹏宇, 梁国标. 染料木黄酮通过SIRT1/p53信号通路对蛛网膜下腔出血后早期脑损伤的作用[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 261-269.
[6] 关明函, 薛志强. 右美托咪定改善大鼠脑缺血再灌注后脑损伤的研究[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 270-276.
[7] 李飞翔, 段虎斌, 李晋虎, 吴昊, 王永红, 范益民. 急性颅脑损伤继发下肢静脉血栓的相关危险因素分析及预测模型构建[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 277-282.
[8] 何彬, 王静. 彩色多普勒超声血流参数、血清尿酸、胱抑素C对短暂性脑缺血发作患者颈动脉狭窄的诊断价值[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 289-294.
[9] 尚慧娟, 袁晓冬. 机械取栓术后应用依达拉奉右崁醇对急性缺血性脑卒中预后的改善[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 295-301.
[10] 潘立, 谢理政, 程宏伟, 茆翔. 创伤性颅脑损伤后垂体功能减退[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 308-312.
[11] 邹勇, 顾应江, 丁昊, 杨呈浩, 陈岷辉, 蔡昱. 基于Nrf2/HO-1及NF-κB信号通路探讨葛根素对大鼠脑出血后早期炎症反应及氧化应激反应的影响[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 271-277.
[12] 孙钢. 超高场磁共振成像的发展现状与展望[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 369-372.
[13] 耿磊, 张照婷, 许磊, 黄海, 孙毅, 杨伏猛, 徐凯, 胡春峰. 帕金森病前驱期基底神经节环路磁共振弥散张量成像的应用研究[J]. 中华临床医师杂志(电子版), 2023, 17(9): 995-1003.
[14] 徐军, 姬园园, 陈君平, 王健. 伴菊形团结构的脑膜瘤合并颅骨侵犯一例并文献复习[J]. 中华临床医师杂志(电子版), 2023, 17(08): 916-919.
[15] 李变, 王莉娜, 桑田, 李珊, 杜雪燕, 李春华, 张兴云, 管巧, 王颖, 冯琪, 蒙景雯. 亚低温技术治疗缺氧缺血性脑病新生儿的临床分析[J]. 中华临床医师杂志(电子版), 2023, 17(06): 639-643.
阅读次数
全文


摘要