切换至 "中华医学电子期刊资源库"

中华诊断学电子杂志 ›› 2020, Vol. 08 ›› Issue (01) : 62 -67. doi: 10.3877/cma.j.issn.2095-655X.2020.01.014

所属专题: 文献

基础研究

Apelin-36通过中枢途径对大鼠摄食、胃肠运动调节作用的研究
武菲1, 崔孟颖1, 陈岳彤1, 高幸1, 李璐1, 冯其贞1, 白波1,()   
  1. 1. 272067 济宁医学院神经生物学研究所
  • 收稿日期:2019-03-04 出版日期:2020-02-26
  • 通信作者: 白波
  • 基金资助:
    国家自然科学基金面上项目(81870948); 山东省自然科学基金(ZR2019PC007); 山东省医药卫生科技发展计划项目(2016WS0162); 济宁医学院青年教师科研扶持基金(JYFC2018KJ022;JY2016KJ006Z); 济宁医学院大学生创新训练计划项目(cx2018031)

Regulatory effect of Apelin-36 on food intake and gastrointestinal motility in rats via central pathway

Fei Wu1, Mengying Cui1, Yuetong Chen1, Xing Gao1, Lu Li1, Qizhen Feng1, Bo Bai1,()   

  1. 1. Institute of Neurobiology, Jining Medical University, Jining 272067, China
  • Received:2019-03-04 Published:2020-02-26
  • Corresponding author: Bo Bai
  • About author:
    Corresponding author: Bai Bo, Email:
引用本文:

武菲, 崔孟颖, 陈岳彤, 高幸, 李璐, 冯其贞, 白波. Apelin-36通过中枢途径对大鼠摄食、胃肠运动调节作用的研究[J]. 中华诊断学电子杂志, 2020, 08(01): 62-67.

Fei Wu, Mengying Cui, Yuetong Chen, Xing Gao, Lu Li, Qizhen Feng, Bo Bai. Regulatory effect of Apelin-36 on food intake and gastrointestinal motility in rats via central pathway[J]. Chinese Journal of Diagnostics(Electronic Edition), 2020, 08(01): 62-67.

目的

探讨Apelin-36对大鼠摄食行为、胃肠运动的影响以及可能的途径。

方法

健康成年雄性SD大鼠共88只。采用随机数字表法从中随机选取32只大鼠,侧脑室埋管并注射生理盐水或Apelin-36(10 nmol/L) 3 μl、6 μl、9 μl,每组8只,测定48 h摄食量。采用随机数字表法选取16只大鼠侧脑室埋管并注射生理盐水或Apelin-36(10 nmol/L) 9 μl,每组8只,计算胃排空率。采用随机数字表法选取16只大鼠,麻醉后在十二指肠降部放置水囊,连接压力感受器,在体检测侧脑室注射生理盐水或Apelin-36后十二指肠运动变化情况,每组8只。随机数字表法选取16只大鼠,在体检测结肠的运动变化情况,每组8只。另外,随机数字表法选取8只大鼠,剖离胃体、十二指肠、结肠平滑肌条,离体条件下检测生理盐水或Apelin-36对平滑肌运动的影响。

结果

48 h累计单位体重摄食结果显示,Apelin-36 3 μl、6 μl、9 μl组摄食量分别为(147.75±33.06)g/Kg、(127.69±23.94)g/Kg、(99.91±18.48)g/Kg,少于生理盐水组[(160.84±28.51)g/kg],并依次递减,差异有统计学意义(F=7.99,P<0.01),Apelin-36 9 μl组摄食量较生理盐水组、Apelin-36 3 μl组降低,均差异有统计学意义(t=6.49, 5.10;均P<0.01);Apelin-36 9 μl组黑夜(24 h)累计单位摄食量[(45.08±11.86)g/Kg],明显少于生理盐水组[(70.77±23.23)g/Kg](t=4.44,P<0.05)。侧脑室注射Apelin-36后大鼠胃排空率为(68.10±6.03)%,较生理盐水组[(79.21±7.94)%]降低,差异有统计学意义(t=3.15,P<0.01)。侧脑室注射Apelin-36后十二指肠降部平滑肌运动幅度降低至(0.29±0.08)g,明显低于生理盐水组[(0.81±0.16)g](t=8.36,P<0.01);而远端结肠的运动幅度[(0.20±0.09)g],较生理盐水组[(0.22±0.08)g]差异无统计学意义(t=0.31,P>0.05)。离体条件下Apelin-36对胃体[(0.19±0.06)g]、十二指肠[(0.09±0.02)g]、结肠平滑肌运动[(0.07±0.01)g]均无显著影响,与生理盐水组[(0.19±0.06)g、(0.08±0.01)g、(0.06±0.02)g]比较,均差异无统计学意义(t=0.13, 0.22, 0.41;均P>0.05)。

结论

侧脑室注射Apelin-36可减少摄食,抑制胃排空、十二指肠运动,但离体条件下Apelin-36对胃肠道平滑肌运动无直接影响。

Objective

To investigate the effects of Apelin-36 on feeding behavior and gastrointestinal motility of rats and its possible pathway.

Methods

There were 88 healthy adult male SD rats in total. Thirty-two rats were randomly selected by random number table and got intracerebroventricular (ICV) injection with saline or Apelin-36(10 nmol/L) 3 μl, 6 μl and 9 μl after lateral ventricular catheterization, with 8 rats in each group. The accumulative total of food intake per body weight for 48 hours were measured and calculated. Another 16 rats were randomly selected by random number table, and the gastric emptying rates were calculated in the 16 rats with lateral ventricle catheterization and injection of saline or Apelin-36 (10 nmol/L) 9 μl, with 8 rats in each group. Sixteen rats were randomly selected by random number table and water sacs were placed in the descending duodenum and baroreceptors were connected. Duodenal motility changes were detected in vivo after lateral ventricular injection of saline or Apelin-36, with 8 rats in each group. Another 16 rats were randomly selected by random number table and colon motility changes were measured in vivo by the same method, with 8 rats in each group. In addition, smooth muscle strips of stomach, duodenum and colon from 8 rats randomly selected by random number table who were dissected to detect the effects of saline or Apelin-36 on the smooth muscle movement in vitro.

Results

The accumulative food intake/body weight of Apelin-36 3 μl, 6 μl and 9 μl were (147.75±33.06)g/Kg, (127.69±23.94)g/Kg, (99.91±18.48)g/Kg respectively, less than that of saline injected group [(160.84±28.51)g/kg](F=7.99, P<0.01). Compared with saline and Apelin-36 3 μl group, the food intake of Apelin-36 9 μl group was significantly lower (t=6.49, 5.10, all P<0.01). The accumulative food intake/body weight at night of Apelin-36 9 μl group was (45.08±11.86)g/Kg, significantly less than that of saline injected group [(70.77±23.23)g/Kg] (t=4.44, P<0.05). The gastric emptying rate of rats injected with Apelin-36 was (68.10±6.03)%, which was significantly lower than that of saline injected group [(79.21±7.94)%](t=3.15, P<0.01). After ICV injection of Apelin-36, the motive amplitude of descending duodenum decreased to (0.29±0.08)g, significantly lower than that of saline injected group [(0.81±0.16)g] (t=8.36, P<0.01). While there was no significant difference of the motive amplitude of distal colon between Apelin-36 and saline injected group [(t=0.31, P>0.05)]. Apelin-36 showed no significant effects on gastric [(0.19±0.06)g], duodenal [(0.09±0.02)g] and colonic [(0.07±0.01)g] smooth muscle movement in vitro compared with saline [(0.19±0.06)g, (0.08±0.01)g, (0.06±0.02)g] (t=0.13, 0.22, 0.41, all P>0.05).

Conclusion

Intracerebroventricular injection of Apelin-36 could reduce food intake, inhibit gastric emptying and duodenal motility, while Apelin-36 shows no direct effect on gastrointestinal smooth muscle movement in vitro.

表1 各组间大鼠摄食量比较(g/Kg,±s)
图1 侧脑室注射物理盐水或Apelin-36对大鼠在体十二指肠降部、远端结肠运动的影响
表2 各组间大鼠胃排空率、十二指肠与结肠运动幅度比较(±s)
图2 离体条件下生理盐水或Apelin-36对大鼠胃体、十二指肠、结肠平滑肌运动的影响
表3 各组间大鼠离体胃体、十二指肠、结肠平滑肌运动比较(g,±s)
[1]
Tatemoto K, Hosoya M, Habata Y,et al.Isolation and characterization of a novel endogenous peptide ligand for the human APJ receptor[J].Biochem Biophys Res Commun,1998,251(2):471-476.
[2]
Kleinz MJ, Davenport AP.Emerging roles of apelin in biology and medicine[J].Pharmacol Ther,2005,107(2):198-211.
[3]
Wu Y, Wang X, Zhou X, et al. Temporal expression of Apelin/Apelin receptor in ischemic stroke and its therapeutic potential[J].Front Mol Neurosci,2017(10):1.
[4]
Medhurst AD, Jennings CA, Robbins MJ,et al.Pharmacological and immunohistochemical characterization of the APJ receptor and its endogenous ligand apelin[J].J Neurochem,2003,84(5):1162-1172.
[5]
Xu J, Chen L, Jiang Z,et al.Biological functions of Elabela,a novel endogenous ligand of APJ receptor[J].J Cell Physiol,2018,233(9):6472-6482.
[6]
张敬美,白波,张秋玲,等.大鼠尾核内Apelin的痛觉调制作用及其机制的实验研究[J].中华行为医学与脑科学杂志,2010,19(2):97-100.
[7]
徐震,王庆尧,王贤斌,等.大鼠侧脑室注射Apelin-13对急性痛的调节作用及机制[J/CD].中华诊断学电子杂志,2016,4(4):279-283.
[8]
Lv SY, Yang YJ, Qin YJ, et al. Central apelin-13 inhibits food intake via the CRF receptor in mice[J].Peptides,2012,33(1):132-138.
[9]
Saral S, Alkanat M, Sumer A, et al. Apelin-13 increased food intake with serum ghrelin and leptin levels in male rats[J].Bratisl Lek Listy,2018,119(1):47-53.
[10]
Lv SY, Yang YJ, Qin YJ, et al. Effect of centrally administered apelin-13 on gastric emptying and gastrointestinal transit in mice[J].Peptides,2011,32(5):978-982.
[11]
秦庆广.针刺对不同状态肠运动的调节作用和神经机制研究[D].武汉:湖北中医药大学,2013:26.
[12]
Alipour FG, Ashoori MR, Pilehvar-Soltanahmadi Y, et al. An overview on biological functions and emerging therapeutic roles of apelin in diabetes mellitus[J].Diabetes Metab Syndr,2017,11(Suppl 2):S919-S923.
[13]
Bülbül M, Sinen O, Birsen I,et al.Peripheral apelin-13 administration inhibits gastrointestinal motor functions in rats:the role of cholecystokinin through CCK1 receptor-mediated pathway[J].Neuropeptides,2017(63):91-97.
[14]
Huang Z, Luo X, Liu M,et al.Function and regulation of apelin/APJ system in digestive physiology and pathology[J].J Cell Physiol,2019,234(6):7796-7810.
[15]
Rezg R, Abot A, Mornagui B, et al. Effects of Bisphenol S on hypothalamic neuropeptides regulating feeding behavior and apelin/APJ system in mice[J].Ecotoxicol Environ Saf,2018(161):459-466.
[16]
Hao J, Liu Q, Zhang X, et al. The evidence of apelin has the bidirectional effects on feeding regulation in Siberian sturgeon (Acipenser baerii)[J].Peptides,2017(94):78-85.
[17]
Yang YJ, Lv SY, Xiu MH,et al.Intracerebroventricular administration of apelin-13 inhibits distal colonic transit in mice[J].Peptides,2010,31(12):2241-2246.
[18]
Idrizaj E, Garella R, Squecco R,et al.Focus on some adipocytes-released peptides involved in the control of gastrointestinal motility[J]. Curr Protein Pept Sci,2019.[Epub ahead]
[19]
Kurowska P, Barbe A, Róz· ycka M,et al.Apelin in reproductive physiology and pathology of different species:a critical review[J].Int J Endocrinol,2018(2018):9170480.
[20]
Brzozowski T, Magierowska K, Magierowski M,et al.Recent advances in the gastric mucosal protection against stress-induced gastric lesions.Importance of renin-angiotensin vasoactive metabolites,gaseous mediators and appetite peptides[J].Curr Pharm Des,2017(23):3910-3922.
[21]
Li H, Kentish SJ, Wittert GA, et al. Apelin modulates murine gastric vagal afferent mechanosensitivity[J].Physiol Behav,2018(194):466-473.
[22]
Ohno S, Yakabi K, Ro S,et al.Apelin-12 stimulates acid secretion through an increase of histamine release in rat stomachs[J].Regul Pept,2012,174 (1-3):71-78.
[23]
Bülbül M, Sinen O, Gök M,et al.Apelin-13 inhibits gastric motility through vagal cholinergic pathway in rats[J].Am J Physiol Gastrointest Liver Physiol,2018,314 (2):201-210.
[24]
Bülbül M, izgüt-Uysal VN, Sinen O,et al.Central apelin mediates stress-induced gastrointestinal motor dysfunction in rats[J].Am J Physiol Gastrointest Liver Physiol,2016,310(4):249-261.
[25]
Birsen I, Gemici B, Acar N,et al.The role of apelin in the healing of water-immersion and restraint stress-induced gastric damage[J].J Physiol Sci,2017,67(3):373-385.
[26]
Zhang X, Tang N, Qi J,et al.CCK reduces the food intake mainly through CCK1R in Siberian sturgeon (Acipenser baerii Brandt)[J].Sci Rep,2017,7(1):12413.
[27]
Tekin S, Erden Y, Sandal S,et al.Effects of apelin on reproductive functions:relationship with feeding behavior and energy metabolism[J].Arch Physiol Biochem,2017,123(1):9-15.
[28]
Ferrante C, Orlando G, Recinella L,et al.Central apelin-13 administration modulates hypothalamic control of feeding[J].J Biol Regul Homeost Agents,2016,30(3):883-888.
[29]
Zhang Y, Wang Y, Lou Y,et al.Elabela,a newly discovered APJ ligand:Similarities and differences with Apelin[J].Peptides,2018(109):23-32.
[1] 丁妍, 文华轩, 陈芷萱, 曾晴, 张梦雨, 廖伊梅, 罗丹丹, 秦越, 梁美玲, 邹于, 李胜利. 胎儿小脑皮质发育不良的产前超声诊断[J]. 中华医学超声杂志(电子版), 2023, 20(03): 255-264.
[2] 丁妍, 文华轩, 张梦雨, 陈思齐, 温昕, 彭桂艳, 曾晴, 罗丹丹, 廖伊梅, 秦越, 梁美玲, 李胜利. 胎儿小脑表面叶裂的产前超声研究[J]. 中华医学超声杂志(电子版), 2023, 20(01): 14-22.
[3] 廖雄宇, 邱坤银, 覃丽君, 何展文. 儿童髓鞘少突胶质细胞糖蛋白抗体相关炎性脱髓鞘疾病临床分析[J]. 中华妇幼临床医学杂志(电子版), 2021, 17(03): 311-320.
[4] 李玉静, 陈七一, 谢汝明, 陈步东. 获得性免疫缺陷综合征相关原发性中枢神经系统淋巴瘤的预后研究[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(03): 200-208.
[5] 李倩, 邓莉平, 陈果, 张忠威, 莫平征, 胡文佳, 陈良君, 张捷, 张永喜, 杨蓉蓉, 熊勇. 宏基因组二代测序在获得性免疫缺陷综合征合并中枢神经系统感染中的临床应用[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(01): 24-31.
[6] 钱永兵, 杭化莲, 张灏旻, 邓羽霄, 陈小松, 夏强. 慢加急性肝衰竭肝移植术后早期并发播散性曲霉病一例[J]. 中华移植杂志(电子版), 2022, 16(05): 306-308.
[7] 韩冰, 王健, 赵帅, 张亦弛, 丁瀚, 顾劲扬. 肝移植术后中枢神经系统曲霉感染一例[J]. 中华移植杂志(电子版), 2021, 15(01): 49-51.
[8] 刘伟华, 赵宇, 刘仲凤, 吴焕童, 张广吉, 陈志国. 神经干细胞生物制剂治疗中枢神经系统恶性肿瘤的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(01): 59-62.
[9] 蔡霖, 龚秋源, 王伟, 田恒力. 单细胞测序分析技术在小胶质细胞表型异质性研究中的最新进展[J]. 中华神经创伤外科电子杂志, 2021, 07(03): 156-160.
[10] 柴慈婧, 涂悦, 张启财, 侯伊玲. 抗tau蛋白抗体基因疗法对慢性颅脑创伤的治疗作用研究[J]. 中华神经创伤外科电子杂志, 2020, 06(05): 292-298.
[11] 陈露, 徐蓉, 吴嘉铭, 罗一宁, 廖建成, 李孟辉, 陈克恩, 张茂营. 颅内磷酸盐尿性间叶性肿瘤致骨软化症一例报道并文献复习[J]. 中华脑科疾病与康复杂志(电子版), 2022, 12(01): 54-57.
[12] 刘娟, 朱吉高, 王立兴, 沈力, 傅剑雄. 增强磁共振成像纹理参数对胶质母细胞瘤、原发性中枢神经系统淋巴瘤和单发转移瘤的鉴别诊断价值[J]. 中华消化病与影像杂志(电子版), 2021, 11(02): 61-66.
[13] 董青, 丁飞, 郭浩, 李峰. Nesfatin-1/NUCB2在幽门螺杆菌感染相关早期胃癌患者中的表达及临床意义[J]. 中华临床医师杂志(电子版), 2023, 17(07): 783-789.
[14] 牛姗姗, 韩佳悦, 吴文浩, 廖健伟, 罗联美, 张亚琴. 弥散张量成像对于康复期COVID-19患者神经损害的初步研究[J]. 中华介入放射学电子杂志, 2022, 10(04): 422-428.
[15] 李志学, 徐英, 刘峥, 余卫军, 马艳, 王德旺, 赵仁成, 谢艾伦, 钱珍珠, 郭艳芳, 陈家隆. 新型冠状病毒肺炎大流行对深圳市青年人群膳食习惯改变意愿的影响[J]. 中华临床实验室管理电子杂志, 2022, 10(02): 111-118,123.
阅读次数
全文


摘要