切换至 "中华医学电子期刊资源库"

中华诊断学电子杂志 ›› 2022, Vol. 10 ›› Issue (01) : 31 -35. doi: 10.3877/cma.j.issn.2095-655X.2022.01.007

神经系统疾病诊治

局灶性皮层发育不良发病机制研究进展
许洁1, 李秋波2,(), 孔庆霞2, 郑明雪1   
  1. 1. 272013 济宁医学院临床医学院
    2. 272029 济宁医学院附属医院神经内科
  • 收稿日期:2021-04-19 出版日期:2022-02-26
  • 通信作者: 李秋波
  • 基金资助:
    山东省自然科学基金项目(ZR2019MH060); 山东省医药卫生科技发展计划项目(2016WS174)

The research progress of pathogenesis of focal cortical dysplasia

Jie Xu1, Qiubo Li2,(), Qingxia Kong2, Mingxue Zheng1   

  1. 1. Clinical Medical College, Jining Medical University, Jining 272013, China
    2. Department of Neurology, Affiliated Hospital of Jining Medical University, Jining 272029, China
  • Received:2021-04-19 Published:2022-02-26
  • Corresponding author: Qiubo Li
引用本文:

许洁, 李秋波, 孔庆霞, 郑明雪. 局灶性皮层发育不良发病机制研究进展[J/OL]. 中华诊断学电子杂志, 2022, 10(01): 31-35.

Jie Xu, Qiubo Li, Qingxia Kong, Mingxue Zheng. The research progress of pathogenesis of focal cortical dysplasia[J/OL]. Chinese Journal of Diagnostics(Electronic Edition), 2022, 10(01): 31-35.

局灶性皮层发育不良(FCD)是一种与药物难治性癫痫高度相关的皮质发育畸形,是难治性癫痫的主要病因之一,在过去的20年里,FCD和药物难治性癫痫之间的关系已经被认识。根据国际抗癫痫联盟工作组的分类,FCD可分为FCD Ⅰ(a、b、c)型、FCD Ⅱ(a、b)型和FCD Ⅲ(a、b、c)型。近几年FCD的发病机制已经被提出,磷脂酰肌醇3-激酶-蛋白激酶-雷帕霉素靶蛋白(PI3K-AKT-mTOR)信号通路的激活、GATOR对mTOR的作用、结节性硬化症(TSC)基因突变、PTKs信号通路的基因突变、GABA受体假说、TRPC的激活、炎症等均可导致FCD,从而引发癫痫。笔者总结以往有关FCD发病机制的研究,探索FCD引起难治性癫痫的机制,从而寻求新的治疗药物,改善FCD患者预后。

Focal cortical dysplasia (FCD) is a malformation of cortical development highly associated with drug-refractory epilepsy. It is one of the main causes of refractory epilepsy. In the past 20 years, the relationship between FCD and drug-refractory epilepsy has been recognized. According to the classification of the International League Against Epilepsy, FCD can be divided into FCD Ⅰ (a, b, c), FCD Ⅱ (a, b) and FCD Ⅲ (a, b, c). In recent years, the pathogenesis of FCD has been proposed. The activation of PI3K-AKT-mTOR signal pathway, the effect of GATOR on mTOR, TSC gene mutation, PTKs signal pathway gene mutation, GABA receptor hypothesis, TRPC activation, inflammation and so on can lead to FCD which can cause epilepsy. The authors summarize the previous studies on the pathogenesis of FCD and explore the mechanism of refractory epilepsy caused by FCD, so as to seek new therapeutic drugs and improve the prognosis of patients with FCD.

[1]
Crome L.Abnormal brain structure in mental deficiency[J].Med World195786(3): 217-223.
[2]
Crino PB.mTOR: A pathogenic signaling pathway in developmental brain malformations[J].Trends Mol Med201117(12): 734-742.DOI: 10.1016/j.molmed.2011.07.008.
[3]
Jansen LA, Mirzaa GM, Ishak GE, et al. PI3K/AKT pathway mutations cause a spectrum of brain malformations from megalencephaly to focal cortical dysplasia[J].Brain2015138(Pt 6): 1613-1628.DOI: 10.1093/brain/awv045.
[4]
Zhou J, Blundell J, Ogawa S,et al.Pharmacological inhibition of mTORC1 suppresses anatomical,cellular,and behavioral abnormalities in neural-specific Pten knock-out mice[J].J Neurosci200929(6): 1773-1783.DOI: 10.1523/JNEUROSCI.
[5]
Lin YX, Lin K, Liu XX,et al.PI3K-AKT pathway polymerase chain reaction (PCR) array analysis of epilepsy induced by type II focal cortical dysplasia[J].Genet Mol Res201514(3): 9994-10000.DOI: 10.4238/2015.
[6]
D′Gama AM, Woodworth MB, Hossain AA,et al.Somatic mutations activating the mTOR pathway in dorsal telencephalic progenitors cause a continuum of cortical dysplasias[J].Cell Rep201721(13): 3754-3766.DOI: 10.1016/j.celrep.2017.11.106.
[7]
Pelorosso C, Watrin F, Conti V,et al.Somatic double-hit in MTOR and RPS6 in hemimegalencephaly with intractable epilepsy[J].Hum Mol Genet201928(22): 3755-3765.DOI: 10.1093/hmg/ddz194.
[8]
Dawson RE, Nieto Guil AF, Robertson LJ,et al.Functional screening of GATOR1 complex variants reveals a role for mTORC1 deregulation in FCD and focal epilepsy[J].Neurobiol Dis2020(134): 104640.DOI: 10.1016/j.nbd.2019.104640.
[9]
Lipton JO, Sahin M.The neurology of mTOR[J].Neuron201484(2): 275-291.DOI: 10.1016/j.neuron.2014.09.034.
[10]
Meng XF, Yu JT, Song JH, et al. Role of the mTOR signaling pathway in epilepsy[J].J Neurol Sci2013332(1-2): 4-15.DOI: 10.1016/j.jns.2013.05.029.
[11]
Baulac S.mTOR signaling pathway genes in focal epilepsies[J].Prog Brain Res2016(226): 61-79.DOI: 10.1016/bs.pbr.2016.04.013.
[12]
Weckhuysen S, Marsan E, Lambrecq V, et al. Involvement of GATOR complex genes in familial focal epilepsies and focal cortical dysplasia[J].Epilepsia201657(6): 994-1003.DOI: 10.1111/epi.13391.
[13]
Iffland PH 2nd, Carson V, Bordey A,et al.GATORopathies:the role of amino acid regulatory gene mutations in epilepsy and cortical malformations[J].Epilepsia201960(11): 2163-2173.DOI: 10.1111/epi.16370.
[14]
Dibbens LM, de Vries B, Donatello S,et al.Mutations in DEPDC5 cause familial focal epilepsy with variable foci[J].Nat Genet201345(5): 546-551.DOI: 10.1038/ng.2599.
[15]
Scheffer IE, Heron SE, Regan BM,et al.Mutations in mammalian target of rapamycin regulator DEPDC5 cause focal epilepsy with brain malformations[J].Ann Neurol201475(5): 782-787.DOI: 10.1002/ana.24126.
[16]
Ricos MG, Hodgson BL, Pippucci T,et al.Mutations in the mammalian target of rapamycin pathway regulators NPRL2 and NPRL3 cause focal epilepsy[J].Ann Neurol201679(1): 120-131.DOI: 10.1002/ana.24547.
[17]
Baldassari S, Picard F, Verbeek NE,et al.Correction: the landscape of epilepsy-related GATOR1 variants[J].Genet Med201921(8): 1896.DOI: 10.1038/s41436-018-0325-9.
[18]
Sim JC, Scerri T, Fanjul-Fernández M, et al. Familial cortical dysplasia caused by mutation in the mammalian target of rapamycin regulator NPRL3[J].Ann Neurol201679(1): 132-137.DOI: 10.1002/ana.24502.
[19]
Scerri T, Riseley JR, Gillies G,et al.Familial cortical dysplasia type IIA caused by a germline mutation in DEPDC5[J].Ann Clin Transl Neurol20152(5): 575-580.DOI: 10.1002/acn3.191.
[20]
Crino PB.mTOR signaling in epilepsy:insights from malformations of cortical development[J].Cold Spring Harb Perspect Med20155(4): a022442.DOI: 10.1101/cshperspect.
[21]
Nguyen LH, Mahadeo T, Bordey A. mTOR hyperactivity levels influence the severity of epilepsy and associated neuropathology in an experimental model of tuberous sclerosis complex and focal cortical dysplasia[J].J Neurosci201939(14): 2762-2773.DOI: 10.1523/JNEUROSCI.2260-18.2019.
[22]
Kumari K, Sharma MC, Kakkar A,et al.mTOR pathway activation in focal cortical dysplasia[J].Ann Diagn Pathol2020(46): 151523.DOI: 10.1016/j.anndiagpath.2020.151523.
[23]
Lim JS, Gopalappa R, Kim SH,et al.Somatic mutations in TSC1 and TSC2 cause focal cortical dysplasia[J].Am J Hum Genet2017100(3): 454-472.DOI: 10.1016/j.ajhg.2017.01.030.
[24]
Kotulska K, Jurkiewicz E, Domańska-Pakieła D,et al.Epilepsy in newborns with tuberous sclerosis complex[J].Eur J Paediatr Neurol201418(6): 714-721.DOI: 10.1016/j.ejpn.2014.06.009.
[25]
Hoelz H, Coppenrath E, Hoertnagel K, et al. Childhood-onset epileptic encephalopathy associated with isolated focal cortical dysplasia and a novel TSC1 germline mutation[J].Clin EEG Neurosci201849(3): 187-191.DOI: 10.1177/1550059417697841.
[26]
Dixit AB, Sharma D, Tripathi M,et al.Genome-wide DNA methylation and RNAseq analyses identify aberrant signalling pathways in focal cortical dysplasia (FCD) type II[J].Sci Rep20188(1): 17976.DOI: 10.1038/s41598-018-35892-5.
[27]
Parker WE, Orlova KA, Heuer GG, et al. Enhanced epidermal growth factor,hepatocyte growth factor,and vascular endothelial growth factor expression in tuberous sclerosis complex[J].Am J Pathol2011178(1): 296-305.DOI: 10.1016/j.ajpath.2010.11.031.
[28]
Xu B, Michalski B, Racine RJ,et al.Continuous infusion of neurotrophin-3 triggers sprouting,decreases the levels of TrkA and TrkC,and inhibits epileptogenesis and activity-dependent axonal growth in adult rats[J].Neuroscience2002115(4): 1295-1308.DOI: 10.1016/s0306-4522(02)00384-6.
[29]
Pönniö T, Conneely OM.nor-1 regulates hippocampal axon guidance,pyramidal cell survival,and seizure susceptibility[J].Mol Cell Biol200424(20): 9070-9078.DOI: 10.1128/MCB.24.20.9070-9078.2004.
[30]
Kuchukhidze G, Wieselthaler-Hölzl A, Drexel M,et al.Calcium-binding proteins in focal cortical dysplasia[J].Epilepsia201556(8): 1207-1216.DOI: 10.1111/epi.13053.
[31]
Blauwblomme T, Dossi E, Pellegrino C,et al.Gamma-aminobutyric acidergic transmission underlies interictal epileptogenicity in pediatric focal cortical dysplasia[J].Ann Neurol201985(2): 204-217.DOI: 10.1002/ana.25403.
[32]
Talos DM, Sun H, Kosaras B,et al.Altered inhibition in tuberous sclerosis and type Ⅱb cortical dysplasia[J].Ann Neurol201271(4): 539-551.DOI: 10.1002/ana.22696.
[33]
Sakakibara T, Sukigara S, Otsuki T,et al.Imbalance of interneuron distribution between neocortex and basal ganglia: consideration of epileptogenesis of focal cortical dysplasia[J].J Neurol Sci2012323(1-2): 128-133.DOI: 10.1016/j.jns.2012.08.035.
[34]
Han P, Welsh CT, Smith MT,et al.Complex patterns of GABAergic neuronal deficiency and type 2 potassium-chloride cotransporter immaturity in human focal cortical dysplasia[J].J Neuropathol Exp Neurol201978(4): 365-372.DOI: 10.1093/jnen/nlz009.
[35]
Zhong S, Zhao Z, Xie W,et al.GABAergic Interneuron and neurotransmission are mTOR-dependently disturbed in experimental focal cortical dysplasia[J].Mol Neurobiol202158(1): 156-169.DOI: 10.1007/s12035-020-02086-y.
[36]
Birnbaumer L.The TRPC class of ion channels: a critical review of their roles in slow,sustained increases in intracellular Ca(2+) concentrations[J].Annu Rev Pharmacol Toxicol2009(49): 395-426.DOI: 10.1146/annurev.pharmtox.48.113006.094928.
[37]
Vazquez G, Wedel BJ, Aziz O,et al.The mammalian TRPC cation channels[J].Biochim Biophys Acta20041742(1-3): 21-36.DOI: 10.1016/j.bbamcr.2004.08.015.
[38]
Bon RS, Beech DJ.In pursuit of small molecule chemistry for calcium-permeable non-selective TRPC channels-mirage or pot of gold?[J].Br J Pharmacol2013170(3): 459-474.DOI: 10.1111/bph.12274.
[39]
Li HS, Xu XZ, Montell C.Activation of a TRPC3-dependent cation current through the neurotrophin BDNF[J].Neuron199924(1): 261-273.DOI: 10.1016/s0896-6273(00)80838-7.
[40]
Kato AS, Knierman MD, Siuda ER,et al.Glutamate receptor δ2 associates with metabotropic glutamate receptor 1 (mGluR1), protein kinase Cγ,and canonical transient receptor potential 3 and regulates mGluR1-mediated synaptic transmission in cerebellar Purkinje neurons[J].J Neurosci201232(44): 15296-15308.DOI: 10.1523/JNEUROSCI.0705-12.2012.
[41]
Lauderdale K, Murphy T, Tung T,et al.Osmotic edema rapidly increases neuronal excitability through activation of NMDA receptor-dependent slow inward currents in juvenile and adult hippocampus[J].ASN Neuro20157(5): 1759091415605115.DOI: 10.1177/1759091415605115.
[42]
Sun D, Ma H, Ma J,et al.Canonical transient receptor potential channel 3 contributes to febrile seizure inducing neuronal cell death and neuroinflammation[J].Cell Mol Neurobiol201838(6): 1215-1226.DOI: 10.1007/s10571-018-0586-5.
[43]
Liang C, Chen X, Zhang CQ,et al.Expression of TRPC3 in cortical lesions from patients with focal cortical dysplasia[J].Neurosci Lett2020(724): 134880.DOI: 10.1016/j.neulet.2020.134880.
[44]
Zheng DH, Guo W, Sun FJ,et al.Expression of TRPC6 and BDNF in cortical lesions from patients with focal cortical dysplasia[J].J Neuropathol Exp Neurol201675(8): 718-730.DOI: 10.1093/jnen/nlw044.
[45]
Aronica E, Crino PB.Inflammation in epilepsy: clinical observations[J].Epilepsia201152 (Suppl 3): 26-32.DOI: 10.1111/j.1528-1167.2011.03033.x.
[46]
Zimmer TS, Ciriminna G, Arena A,et al.Chronic activation of anti-oxidant pathways and iron accumulation in epileptogenic malformations[J].Neuropathol Appl Neurobiol202046(6): 546-563.DOI: 10.1111/nan.12596.
[47]
Arena A, Zimmer TS, van Scheppingen J,et al.Oxidative stress and inflammation in a spectrum of epileptogenic cortical malformations: molecular insights into their interdependence[J].Brain Pathol201929(3): 351-365.DOI: 10.1111/bpa.12661.
[48]
Zhang Z, Liu Q, Liu M,et al. Upregulation of HMGB1-TLR4 inflammatory pathway in focal cortical dysplasia type Ⅱ[J].J Neuroinflammation201815(1): 27.DOI: 10.1186/s12974-018-1078-8.
[49]
Srivastava A, Dixit AB, Paul D, et al. Comparative analysis of cytokine/chemokine regulatory networks in patients with hippocampal sclerosis (HS) and focal cortical dysplasia (FCD)[J].Sci Rep20177(1): 15904.DOI: 10.1038/s41598-017-16041-w.
[50]
Jung T, Grune T.The proteasome and the degradation of oxidized proteins:part I-structure of proteasomes[J].Redox Biol20131(1): 178-182.DOI: 10.1016/j.redox.2013.01.004.
[51]
van Scheppingen J, Broekaart DW, Scholl T,et al.Dysregulation of the (immuno)proteasome pathway in malformations of cortical development[J].J Neuroinflammation201613(1): 202.DOI: 10.1186/s12974-016-0662-z.
[52]
He JJ, Li S, Shu HF,et al.The interleukin 17 system in cortical lesions in focal cortical dysplasias[J].J Neuropathol Exp Neurol201372(2): 152-163.DOI: 10.1097/NEN.0b013e318281262e.
[1] 于桐, 孙姗姗, 刘扬. 乳腺导管原位癌的浸润转化机制及临床病理特征[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(05): 304-307.
[2] 李蓉. 薄型子宫内膜治疗新方法[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 591-591.
[3] 严华悦, 刘子祥, 周少波. 磷酸烯醇式丙酮酸羧激酶-1在恶性肿瘤中的研究进展[J/OL]. 中华普通外科学文献(电子版), 2024, 18(06): 452-456.
[4] 朱江, 张进, 孔云飞, 李军, 宋旭. 核梭杆菌和胰腺癌的关系及临床意义[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(04): 448-451.
[5] 刘璐璐, 何羽. 慢性阻塞性肺病患者睡眠障碍的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 836-839.
[6] 袁园园, 岳乐淇, 张华兴, 武艳, 李全海. 间充质干细胞在呼吸系统疾病模型中肺组织分布及治疗机制的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 374-381.
[7] 王庭宇, 邵联波, 刘珊, 沈振亚. Stanford A 型主动脉夹层相关基因KIF20A 的共表达网络构建及作用靶点分析[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 303-312.
[8] 孟煜凡, 李永政, 樊知遥, 展翰翔. 瘤内微生物在胰腺癌发病和演进中的作用机制及研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(04): 577-582.
[9] 赵泽云, 李建男, 王旻. 中性粒细胞胞外诱捕网在结直肠癌中的研究进展[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 524-528.
[10] 王梦琪, 刘恒昌, 陈海鹏, 刘佳. 骶神经刺激治疗排便失禁的机制研究进展[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(05): 417-422.
[11] 陈利, 杨长青, 朱风尚. 重视炎症性肠病和代谢相关脂肪性肝病间的串话机制研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 385-389.
[12] 刘琦, 王守凯, 王帅, 苏雨晴, 马壮, 陈海军, 司丕蕾. 乳腺癌肿瘤内微生物组的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 841-845.
[13] 徐靖亭, 孔璐. PARP抑制剂治疗卵巢癌的耐药机制及应对策略[J/OL]. 中华临床医师杂志(电子版), 2024, 18(06): 584-588.
[14] 曹亚丽, 高雨萌, 张英谦, 李博, 杜军保, 金红芳. 儿童坐位不耐受的临床进展[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(05): 510-515.
[15] 吴娟娟, 彭斌, 倪俊. 脑淀粉样血管病疾病修饰治疗研究进展[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(04): 375-381.
阅读次数
全文


摘要