切换至 "中华医学电子期刊资源库"

中华诊断学电子杂志 ›› 2022, Vol. 10 ›› Issue (01) : 31 -35. doi: 10.3877/cma.j.issn.2095-655X.2022.01.007

神经系统疾病诊治

局灶性皮层发育不良发病机制研究进展
许洁1, 李秋波2,(), 孔庆霞2, 郑明雪1   
  1. 1. 272013 济宁医学院临床医学院
    2. 272029 济宁医学院附属医院神经内科
  • 收稿日期:2021-04-19 出版日期:2022-02-26
  • 通信作者: 李秋波
  • 基金资助:
    山东省自然科学基金项目(ZR2019MH060); 山东省医药卫生科技发展计划项目(2016WS174)

The research progress of pathogenesis of focal cortical dysplasia

Jie Xu1, Qiubo Li2,(), Qingxia Kong2, Mingxue Zheng1   

  1. 1. Clinical Medical College, Jining Medical University, Jining 272013, China
    2. Department of Neurology, Affiliated Hospital of Jining Medical University, Jining 272029, China
  • Received:2021-04-19 Published:2022-02-26
  • Corresponding author: Qiubo Li
引用本文:

许洁, 李秋波, 孔庆霞, 郑明雪. 局灶性皮层发育不良发病机制研究进展[J]. 中华诊断学电子杂志, 2022, 10(01): 31-35.

Jie Xu, Qiubo Li, Qingxia Kong, Mingxue Zheng. The research progress of pathogenesis of focal cortical dysplasia[J]. Chinese Journal of Diagnostics(Electronic Edition), 2022, 10(01): 31-35.

局灶性皮层发育不良(FCD)是一种与药物难治性癫痫高度相关的皮质发育畸形,是难治性癫痫的主要病因之一,在过去的20年里,FCD和药物难治性癫痫之间的关系已经被认识。根据国际抗癫痫联盟工作组的分类,FCD可分为FCD Ⅰ(a、b、c)型、FCD Ⅱ(a、b)型和FCD Ⅲ(a、b、c)型。近几年FCD的发病机制已经被提出,磷脂酰肌醇3-激酶-蛋白激酶-雷帕霉素靶蛋白(PI3K-AKT-mTOR)信号通路的激活、GATOR对mTOR的作用、结节性硬化症(TSC)基因突变、PTKs信号通路的基因突变、GABA受体假说、TRPC的激活、炎症等均可导致FCD,从而引发癫痫。笔者总结以往有关FCD发病机制的研究,探索FCD引起难治性癫痫的机制,从而寻求新的治疗药物,改善FCD患者预后。

Focal cortical dysplasia (FCD) is a malformation of cortical development highly associated with drug-refractory epilepsy. It is one of the main causes of refractory epilepsy. In the past 20 years, the relationship between FCD and drug-refractory epilepsy has been recognized. According to the classification of the International League Against Epilepsy, FCD can be divided into FCD Ⅰ (a, b, c), FCD Ⅱ (a, b) and FCD Ⅲ (a, b, c). In recent years, the pathogenesis of FCD has been proposed. The activation of PI3K-AKT-mTOR signal pathway, the effect of GATOR on mTOR, TSC gene mutation, PTKs signal pathway gene mutation, GABA receptor hypothesis, TRPC activation, inflammation and so on can lead to FCD which can cause epilepsy. The authors summarize the previous studies on the pathogenesis of FCD and explore the mechanism of refractory epilepsy caused by FCD, so as to seek new therapeutic drugs and improve the prognosis of patients with FCD.

[1]
Crome L.Abnormal brain structure in mental deficiency[J].Med World195786(3): 217-223.
[2]
Crino PB.mTOR: A pathogenic signaling pathway in developmental brain malformations[J].Trends Mol Med201117(12): 734-742.DOI: 10.1016/j.molmed.2011.07.008.
[3]
Jansen LA, Mirzaa GM, Ishak GE, et al. PI3K/AKT pathway mutations cause a spectrum of brain malformations from megalencephaly to focal cortical dysplasia[J].Brain2015138(Pt 6): 1613-1628.DOI: 10.1093/brain/awv045.
[4]
Zhou J, Blundell J, Ogawa S,et al.Pharmacological inhibition of mTORC1 suppresses anatomical,cellular,and behavioral abnormalities in neural-specific Pten knock-out mice[J].J Neurosci200929(6): 1773-1783.DOI: 10.1523/JNEUROSCI.
[5]
Lin YX, Lin K, Liu XX,et al.PI3K-AKT pathway polymerase chain reaction (PCR) array analysis of epilepsy induced by type II focal cortical dysplasia[J].Genet Mol Res201514(3): 9994-10000.DOI: 10.4238/2015.
[6]
D′Gama AM, Woodworth MB, Hossain AA,et al.Somatic mutations activating the mTOR pathway in dorsal telencephalic progenitors cause a continuum of cortical dysplasias[J].Cell Rep201721(13): 3754-3766.DOI: 10.1016/j.celrep.2017.11.106.
[7]
Pelorosso C, Watrin F, Conti V,et al.Somatic double-hit in MTOR and RPS6 in hemimegalencephaly with intractable epilepsy[J].Hum Mol Genet201928(22): 3755-3765.DOI: 10.1093/hmg/ddz194.
[8]
Dawson RE, Nieto Guil AF, Robertson LJ,et al.Functional screening of GATOR1 complex variants reveals a role for mTORC1 deregulation in FCD and focal epilepsy[J].Neurobiol Dis2020(134): 104640.DOI: 10.1016/j.nbd.2019.104640.
[9]
Lipton JO, Sahin M.The neurology of mTOR[J].Neuron201484(2): 275-291.DOI: 10.1016/j.neuron.2014.09.034.
[10]
Meng XF, Yu JT, Song JH, et al. Role of the mTOR signaling pathway in epilepsy[J].J Neurol Sci2013332(1-2): 4-15.DOI: 10.1016/j.jns.2013.05.029.
[11]
Baulac S.mTOR signaling pathway genes in focal epilepsies[J].Prog Brain Res2016(226): 61-79.DOI: 10.1016/bs.pbr.2016.04.013.
[12]
Weckhuysen S, Marsan E, Lambrecq V, et al. Involvement of GATOR complex genes in familial focal epilepsies and focal cortical dysplasia[J].Epilepsia201657(6): 994-1003.DOI: 10.1111/epi.13391.
[13]
Iffland PH 2nd, Carson V, Bordey A,et al.GATORopathies:the role of amino acid regulatory gene mutations in epilepsy and cortical malformations[J].Epilepsia201960(11): 2163-2173.DOI: 10.1111/epi.16370.
[14]
Dibbens LM, de Vries B, Donatello S,et al.Mutations in DEPDC5 cause familial focal epilepsy with variable foci[J].Nat Genet201345(5): 546-551.DOI: 10.1038/ng.2599.
[15]
Scheffer IE, Heron SE, Regan BM,et al.Mutations in mammalian target of rapamycin regulator DEPDC5 cause focal epilepsy with brain malformations[J].Ann Neurol201475(5): 782-787.DOI: 10.1002/ana.24126.
[16]
Ricos MG, Hodgson BL, Pippucci T,et al.Mutations in the mammalian target of rapamycin pathway regulators NPRL2 and NPRL3 cause focal epilepsy[J].Ann Neurol201679(1): 120-131.DOI: 10.1002/ana.24547.
[17]
Baldassari S, Picard F, Verbeek NE,et al.Correction: the landscape of epilepsy-related GATOR1 variants[J].Genet Med201921(8): 1896.DOI: 10.1038/s41436-018-0325-9.
[18]
Sim JC, Scerri T, Fanjul-Fernández M, et al. Familial cortical dysplasia caused by mutation in the mammalian target of rapamycin regulator NPRL3[J].Ann Neurol201679(1): 132-137.DOI: 10.1002/ana.24502.
[19]
Scerri T, Riseley JR, Gillies G,et al.Familial cortical dysplasia type IIA caused by a germline mutation in DEPDC5[J].Ann Clin Transl Neurol20152(5): 575-580.DOI: 10.1002/acn3.191.
[20]
Crino PB.mTOR signaling in epilepsy:insights from malformations of cortical development[J].Cold Spring Harb Perspect Med20155(4): a022442.DOI: 10.1101/cshperspect.
[21]
Nguyen LH, Mahadeo T, Bordey A. mTOR hyperactivity levels influence the severity of epilepsy and associated neuropathology in an experimental model of tuberous sclerosis complex and focal cortical dysplasia[J].J Neurosci201939(14): 2762-2773.DOI: 10.1523/JNEUROSCI.2260-18.2019.
[22]
Kumari K, Sharma MC, Kakkar A,et al.mTOR pathway activation in focal cortical dysplasia[J].Ann Diagn Pathol2020(46): 151523.DOI: 10.1016/j.anndiagpath.2020.151523.
[23]
Lim JS, Gopalappa R, Kim SH,et al.Somatic mutations in TSC1 and TSC2 cause focal cortical dysplasia[J].Am J Hum Genet2017100(3): 454-472.DOI: 10.1016/j.ajhg.2017.01.030.
[24]
Kotulska K, Jurkiewicz E, Domańska-Pakieła D,et al.Epilepsy in newborns with tuberous sclerosis complex[J].Eur J Paediatr Neurol201418(6): 714-721.DOI: 10.1016/j.ejpn.2014.06.009.
[25]
Hoelz H, Coppenrath E, Hoertnagel K, et al. Childhood-onset epileptic encephalopathy associated with isolated focal cortical dysplasia and a novel TSC1 germline mutation[J].Clin EEG Neurosci201849(3): 187-191.DOI: 10.1177/1550059417697841.
[26]
Dixit AB, Sharma D, Tripathi M,et al.Genome-wide DNA methylation and RNAseq analyses identify aberrant signalling pathways in focal cortical dysplasia (FCD) type II[J].Sci Rep20188(1): 17976.DOI: 10.1038/s41598-018-35892-5.
[27]
Parker WE, Orlova KA, Heuer GG, et al. Enhanced epidermal growth factor,hepatocyte growth factor,and vascular endothelial growth factor expression in tuberous sclerosis complex[J].Am J Pathol2011178(1): 296-305.DOI: 10.1016/j.ajpath.2010.11.031.
[28]
Xu B, Michalski B, Racine RJ,et al.Continuous infusion of neurotrophin-3 triggers sprouting,decreases the levels of TrkA and TrkC,and inhibits epileptogenesis and activity-dependent axonal growth in adult rats[J].Neuroscience2002115(4): 1295-1308.DOI: 10.1016/s0306-4522(02)00384-6.
[29]
Pönniö T, Conneely OM.nor-1 regulates hippocampal axon guidance,pyramidal cell survival,and seizure susceptibility[J].Mol Cell Biol200424(20): 9070-9078.DOI: 10.1128/MCB.24.20.9070-9078.2004.
[30]
Kuchukhidze G, Wieselthaler-Hölzl A, Drexel M,et al.Calcium-binding proteins in focal cortical dysplasia[J].Epilepsia201556(8): 1207-1216.DOI: 10.1111/epi.13053.
[31]
Blauwblomme T, Dossi E, Pellegrino C,et al.Gamma-aminobutyric acidergic transmission underlies interictal epileptogenicity in pediatric focal cortical dysplasia[J].Ann Neurol201985(2): 204-217.DOI: 10.1002/ana.25403.
[32]
Talos DM, Sun H, Kosaras B,et al.Altered inhibition in tuberous sclerosis and type Ⅱb cortical dysplasia[J].Ann Neurol201271(4): 539-551.DOI: 10.1002/ana.22696.
[33]
Sakakibara T, Sukigara S, Otsuki T,et al.Imbalance of interneuron distribution between neocortex and basal ganglia: consideration of epileptogenesis of focal cortical dysplasia[J].J Neurol Sci2012323(1-2): 128-133.DOI: 10.1016/j.jns.2012.08.035.
[34]
Han P, Welsh CT, Smith MT,et al.Complex patterns of GABAergic neuronal deficiency and type 2 potassium-chloride cotransporter immaturity in human focal cortical dysplasia[J].J Neuropathol Exp Neurol201978(4): 365-372.DOI: 10.1093/jnen/nlz009.
[35]
Zhong S, Zhao Z, Xie W,et al.GABAergic Interneuron and neurotransmission are mTOR-dependently disturbed in experimental focal cortical dysplasia[J].Mol Neurobiol202158(1): 156-169.DOI: 10.1007/s12035-020-02086-y.
[36]
Birnbaumer L.The TRPC class of ion channels: a critical review of their roles in slow,sustained increases in intracellular Ca(2+) concentrations[J].Annu Rev Pharmacol Toxicol2009(49): 395-426.DOI: 10.1146/annurev.pharmtox.48.113006.094928.
[37]
Vazquez G, Wedel BJ, Aziz O,et al.The mammalian TRPC cation channels[J].Biochim Biophys Acta20041742(1-3): 21-36.DOI: 10.1016/j.bbamcr.2004.08.015.
[38]
Bon RS, Beech DJ.In pursuit of small molecule chemistry for calcium-permeable non-selective TRPC channels-mirage or pot of gold?[J].Br J Pharmacol2013170(3): 459-474.DOI: 10.1111/bph.12274.
[39]
Li HS, Xu XZ, Montell C.Activation of a TRPC3-dependent cation current through the neurotrophin BDNF[J].Neuron199924(1): 261-273.DOI: 10.1016/s0896-6273(00)80838-7.
[40]
Kato AS, Knierman MD, Siuda ER,et al.Glutamate receptor δ2 associates with metabotropic glutamate receptor 1 (mGluR1), protein kinase Cγ,and canonical transient receptor potential 3 and regulates mGluR1-mediated synaptic transmission in cerebellar Purkinje neurons[J].J Neurosci201232(44): 15296-15308.DOI: 10.1523/JNEUROSCI.0705-12.2012.
[41]
Lauderdale K, Murphy T, Tung T,et al.Osmotic edema rapidly increases neuronal excitability through activation of NMDA receptor-dependent slow inward currents in juvenile and adult hippocampus[J].ASN Neuro20157(5): 1759091415605115.DOI: 10.1177/1759091415605115.
[42]
Sun D, Ma H, Ma J,et al.Canonical transient receptor potential channel 3 contributes to febrile seizure inducing neuronal cell death and neuroinflammation[J].Cell Mol Neurobiol201838(6): 1215-1226.DOI: 10.1007/s10571-018-0586-5.
[43]
Liang C, Chen X, Zhang CQ,et al.Expression of TRPC3 in cortical lesions from patients with focal cortical dysplasia[J].Neurosci Lett2020(724): 134880.DOI: 10.1016/j.neulet.2020.134880.
[44]
Zheng DH, Guo W, Sun FJ,et al.Expression of TRPC6 and BDNF in cortical lesions from patients with focal cortical dysplasia[J].J Neuropathol Exp Neurol201675(8): 718-730.DOI: 10.1093/jnen/nlw044.
[45]
Aronica E, Crino PB.Inflammation in epilepsy: clinical observations[J].Epilepsia201152 (Suppl 3): 26-32.DOI: 10.1111/j.1528-1167.2011.03033.x.
[46]
Zimmer TS, Ciriminna G, Arena A,et al.Chronic activation of anti-oxidant pathways and iron accumulation in epileptogenic malformations[J].Neuropathol Appl Neurobiol202046(6): 546-563.DOI: 10.1111/nan.12596.
[47]
Arena A, Zimmer TS, van Scheppingen J,et al.Oxidative stress and inflammation in a spectrum of epileptogenic cortical malformations: molecular insights into their interdependence[J].Brain Pathol201929(3): 351-365.DOI: 10.1111/bpa.12661.
[48]
Zhang Z, Liu Q, Liu M,et al. Upregulation of HMGB1-TLR4 inflammatory pathway in focal cortical dysplasia type Ⅱ[J].J Neuroinflammation201815(1): 27.DOI: 10.1186/s12974-018-1078-8.
[49]
Srivastava A, Dixit AB, Paul D, et al. Comparative analysis of cytokine/chemokine regulatory networks in patients with hippocampal sclerosis (HS) and focal cortical dysplasia (FCD)[J].Sci Rep20177(1): 15904.DOI: 10.1038/s41598-017-16041-w.
[50]
Jung T, Grune T.The proteasome and the degradation of oxidized proteins:part I-structure of proteasomes[J].Redox Biol20131(1): 178-182.DOI: 10.1016/j.redox.2013.01.004.
[51]
van Scheppingen J, Broekaart DW, Scholl T,et al.Dysregulation of the (immuno)proteasome pathway in malformations of cortical development[J].J Neuroinflammation201613(1): 202.DOI: 10.1186/s12974-016-0662-z.
[52]
He JJ, Li S, Shu HF,et al.The interleukin 17 system in cortical lesions in focal cortical dysplasias[J].J Neuropathol Exp Neurol201372(2): 152-163.DOI: 10.1097/NEN.0b013e318281262e.
[1] 张晓燕, 肖东琼, 高沪, 陈琳, 唐发娟, 李熙鸿. 转录因子12过表达对脓毒症相关性脑病大鼠大脑皮质的保护作用及其机制[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 540-549.
[2] 陆美琪, 赵洁, 单菲, 王兴蕾, 姜笃银. 药物相关坏疽性脓皮病的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 447-450.
[3] 张潇尹, 于洋. 牙龈卟啉单胞菌介导慢性肾病发生发展的研究进展[J]. 中华口腔医学研究杂志(电子版), 2023, 17(05): 328-334.
[4] 李永浩, 高雪菲, 郭田田, 张进, 张彩针, 刘静. 肥胖合并甲状腺癌相关机制的研究进展[J]. 中华普通外科学文献(电子版), 2023, 17(04): 311-315.
[5] 叶晓琳, 刘云飞, 庞明泉, 王海久, 任利, 侯立朝, 于文昊, 王志鑫, 樊海宁. 肝再生细胞来源及调控机制的研究进展[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 96-99.
[6] 熊风, 林辉煌, 陈晓波. 铥激光在泌尿外科中的临床应用及研究进展[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 533-536.
[7] 唐英俊, 李华娟, 王赛妮, 徐旺, 刘峰, 李羲, 郝新宝, 黄华萍. 人脐带间充质干细胞治疗COPD小鼠及机制分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 476-480.
[8] 任加发, 邬步云, 邢昌赢, 毛慧娟. 2022年急性肾损伤领域基础与临床研究进展[J]. 中华肾病研究电子杂志, 2023, 12(05): 276-281.
[9] 唐凯, 刘正峰, 宋佳蔚, 卢秀珍. 角膜巩膜干凹斑的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 231-235.
[10] 张坤淇, 张睿, 徐佳, 康庆林. 漂浮膝损伤的诊治进展[J]. 中华老年骨科与康复电子杂志, 2023, 09(04): 252-256.
[11] 金刚, 李英真, 施维, 李博. 帕金森病在病理生理学中的研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 315-319.
[12] 李田, 徐洪, 刘和亮. 尘肺病的相关研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(08): 900-905.
[13] 沈丘月, 侯新琳. n-3多不饱和脂肪酸脑保护机制研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(04): 471-478.
[14] 尹琛俊, 张喆, 李晓明. 卵圆孔未闭相关血栓形成机制的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(04): 307-311.
[15] 于玲, 张祉昱, 张喆, 傅瑜. 偏头痛常见诱因及其在疾病管理中的应用研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(04): 400-403.
阅读次数
全文


摘要