切换至 "中华医学电子期刊资源库"

中华诊断学电子杂志 ›› 2022, Vol. 10 ›› Issue (04) : 284 -288. doi: 10.3877/cma.j.issn.2095-655X.2022.04.014

综述

线粒体相关内质网膜的生物学功能及其在相关疾病中作用的研究进展
于露1, 李永华2,()   
  1. 1. 272013 济宁医学院临床医学院
    2. 272029 济宁医学院附属医院眼科
  • 收稿日期:2022-03-16 出版日期:2022-11-25
  • 通信作者: 李永华

Research progress on biological function of mitochondria-associated endoplasmic reticulum membranes and its role in related diseases

Lu Yu1, Yonghua Li2,()   

  1. 1. College of Clinical Medicine, Jining Medical University, Jining 272013, China
    2. Department of Ophthalmology, the Affiliated Hospital of Jining Medical University, Jining 272029, China
  • Received:2022-03-16 Published:2022-11-25
  • Corresponding author: Yonghua Li
引用本文:

于露, 李永华. 线粒体相关内质网膜的生物学功能及其在相关疾病中作用的研究进展[J]. 中华诊断学电子杂志, 2022, 10(04): 284-288.

Lu Yu, Yonghua Li. Research progress on biological function of mitochondria-associated endoplasmic reticulum membranes and its role in related diseases[J]. Chinese Journal of Diagnostics(Electronic Edition), 2022, 10(04): 284-288.

内质网和线粒体外膜之间的接触点,被称为线粒体相关内质网膜(MAMs)。MAMs包含多种膜蛋白、通道蛋白及载体蛋白等,可通过多种信号级联反应,参与包括线粒体自噬、Ca2+释放、炎症反应、脂质代谢、新生血管形成等多种生物学功能,并影响心血管疾病、糖尿病、癌症等多种疾病的进展。笔者主要对MAMs的各种生物学功能及其在相关疾病中的作用研究进展进行综述。

" Mitochondrial-associated endoplasmic reticulum membranes (MAMs)" refer to the region where the endoplasmic reticulum and the outer membrane of the mitochondria come into contact. MAMs contain carrier proteins, channel proteins, and membrane proteins. MAMs can take part in a wide range of biological processes, such as mitophagy, Ca2+ release, inflammatory response, lipid metabolism, and neoangiogenesis. They can also affect the disease development, such as like cardiovascular disease, diabetes, and cancer. This essay′s primary objective is to summarize the numerous biological functions of MAMs and how those functions relate to various diseases.

[1]
Poston CN, Krishnan SC, Bazemore-Walker CR.In-depth proteomic analysis of mammalian mitochondria-associated membranes(MAM)[J].J Proteomics2013(79):219-230.DOI:10.1016/j.jprot.2012.12.018.
[2]
Barazzuol L, Giamogante F, Calì T.Mitochondria associated membranes(MAMs):architecture and physiopathological role[J].Cell Calcium2021(94):102343.DOI:10.1016/j.ceca.2020.102343.
[3]
Yang JY, Yang WY. Bit-by-bit autophagic removal of parkin-labelled mitochondria[J].Nat Commun2013(4):2428.DOI:10.1038/ncomms3428.
[4]
Kornmann B, Currie E, Collins SR, et al. An ER-mitochondria tethering complex revealed by a synthetic biology screen[J].Science2009325(5939):477-481.DOI:10.1126/science.1175088.
[5]
Gelmetti V, De Rosa P, Torosantucci L,et al.PINK1 and BECN1 relocalize at mitochondria-associated membranes during mitophagy and promote ER-mitochondria tethering and autophagosome formation[J].Autophagy201713(4):654-669.DOI:10.1080/15548627.2016.1277309.
[6]
Pickrell AM, Youle RJ.The roles of PINK1,parkin,and mitochondrial fidelity in Parkinson's disease[J].Neuron201585(2):257-273.DOI:10.1016/j.neuron.2014.12.007.
[7]
Birgisdottir ÅB, Lamark T, Johansen T.The LIR motif-crucial for selective autophagy[J].J Cell Sci2013126(Pt 15):3237-3247.DOI:10.1242/jcs.126128.
[8]
Wu W, Lin C, Wu K, et al. FUNDC1 regulates mitochondrial dynamics at the ER-mitochondrial contact site under hypoxic conditions[J].EMBO J201635(13):1368-1384.DOI:10.15252/embj.201593102.
[9]
Li W, Zhang X, Zhuang H,et al.MicroRNA-137 is a novel hypoxia-responsive microRNA that inhibits mitophagy via regulation of two mitophagy receptors FUNDC1 and NIX[J].J Biol Chem2014289(15):10691-10701.DOI:10.1074/jbc.M113.537050.
[10]
Mercer TJ, Gubas A, Tooze SA.A molecular perspective of mammalian autophagosome biogenesis[J].J Biol Chem2018293(15):5386-5395.DOI:10.1074/jbc.R117.810366.
[11]
de Brito OM, Scorrano L.Mitofusin 2 tethers endoplasmic reticulum to mitochondria[J].Nature2008456(7222):605-610.DOI:10.1038/nature07534.
[12]
Missiroli S, Patergnani S, Caroccia N,et al.Mitochondria-associated membranes (MAMs) and inflammation[J].Cell Death Dis20189(3):329.DOI:10.1038/s41419-017-0027-2.
[13]
Zhou R, Yazdi AS, Menu P,et al.A role for mitochondria in NLRP3 inflammasome activation[J].Nature2011469(7329):221-225.DOI:10.1038/nature09663.
[14]
Qu C, Li Y, Li Y,et al.Full-length MAVS,a mitochondrial antiviral-signaling protein,inhibits hepatitis E virus replication,requiring JAK-STAT signaling[J].Arch Virol2022167(5):1293-1300.DOI:10.1007/s00705-022-05415-9.
[15]
Bender S, Reuter A, Eberle F,et al.Activation of type Ⅰ and Ⅲ interferon response by mitochondrial and peroxisomal MAVS and inhibition by hepatitis C virus[J].PLoS Pathog201511(11):e1005264.DOI:10.1371/journal.ppat.1005264.
[16]
Marquette A, Leborgne C, Schartner V,et al.Peptides derived from the C-terminal domain of HIV-1 viral protein R in lipid bilayers:structure,membrane positioning and gene delivery[J].Biochim Biophys Acta Biomembr20201862(2):183149.DOI:10.1016/j.bbamem.2019.183149.
[17]
Petrungaro C, Kornmann B.Lipid exchange at ER-mitochondria contact sites:a puzzle falling into place with quite a few pieces missing[J].Curr Opin Cell Biol2019(57):71-76.DOI:10.1016/j.ceb.2018.11.005.
[18]
Sohn M, Korzeniowski M, Zewe JP,et al.PI(4,5)P2 controls plasma membrane PI4P and PS levels via ORP5/8 recruitment to ER-PM contact sites[J].J Cell Biol2018217(5):1797-1813.DOI:10.1083/jcb.201710095.
[19]
Wang C, Dai X, Wu S,et al.FUNDC1-dependent mitochondria-associated endoplasmic reticulum membranes are involved in angiogenesis and neoangiogenesis[J].Nat Commun202112(1):2616.DOI:10.1038/s41467-021-22771-3.
[20]
Silva-Palacios A, Zazueta C, Pedraza-Chaverri J.ER membranes associated with mitochondria:possible therapeutic targets in heart-associated diseases[J].Pharmacol Res2020(156):104758.DOI:10.1016/j.phrs.2020.104758.
[21]
Tan Y, Zhang Z, Zheng C,et al.Mechanisms of diabetic cardiomyopathy and potential therapeutic strategies:preclinical and clinical evidence[J].Nat Rev Cardiol202017(9):585-607.DOI:10.1038/s41569-020-0339-2.
[22]
Wu S, Lu Q, Ding Y,et al.Hyperglycemia-driven inhibition of AMP-activated protein kinase α2 induces diabetic cardiomyopathy by promoting mitochondria-associated endoplasmic reticulum membranes in vivo[J].Circulation2019139(16):1913-1936.DOI:10.1161/CIRCULATIONAHA.118.033552.
[23]
Wu S, Lu Q, Wang Q,et al.Binding of FUN14 domain containing 1 with inositol 1,4,5-trisphosphate receptor in mitochondria-associated endoplasmic reticulum membranes maintains mitochondrial dynamics and function in hearts in vivo[J].Circulation2017136(23):2248-2266.DOI:10.1161/CIRCULATIONAHA.117.030235.
[24]
Eizirik DL, Pasquali L, Cnop M.Pancreatic β-cells in type 1 and type 2 diabetes mellitus:different pathways to failure[J].Nat Rev Endocrinol202016(7):349-362.DOI:10.1038/s41574-020-0355-7.
[25]
Rieusset J.Contribution of mitochondria and endoplasmic reticulum dysfunction in insulin resistance:distinct or interrelated roles?[J].Diabetes Metab201541(5):358-368.DOI:10.1016/j.diabet.2015.02.006.
[26]
Chen Y, Chen J, Zhang C,et al.Deficiency in the short-chain acyl-CoA dehydrogenase protects mice against diet-induced obesity and insulin resistance[J].FASEB J201933(12):13722-13733.DOI:10.1096/fj.201901474RR.
[27]
Siasos G, Paschou SA, Tousoulis D.Mitochondria and diabetes[J].Ann Transl Med20208(6):262.DOI:10.21037/atm.2020.03.15.
[28]
Tubbs E, Chanon S, Robert M,et al.Disruption of mitochondria-associated endoplasmic reticulum membrane (MAM) integrity contributes to muscle insulin resistance in mice and humans[J].Diabetes201867(4):636-650.DOI:10.2337/db17-0316.
[29]
Rieusset J.Role of endoplasmic reticulum-mitochondria communication in type 2 diabetes[J].Adv Exp Med Biol2017(997):171-186.DOI:10.1007/978-981-10-4567-7_13.
[30]
Wu H, Wang Y, Li W,et al.Deficiency of mitophagy receptor FUNDC1 impairs mitochondrial quality and aggravates dietary-induced obesity and metabolic syndrome[J].Autophagy201915(11):1882-1898.DOI:10.1080/15548627.2019.1596482.
[31]
Kharitonenkov A, DiMarchi R.Fibroblast growth factor 21 night watch:advances and uncertainties in the field[J].J Intern Med2017281(3):233-246.DOI:10.1111/joim.12580.
[32]
Jimenez V, Jambrina C, Casana E,et al.FGF21 gene therapy as treatment for obesity and insulin resistance[J].EMBO Mol Med201810(8):e8791.DOI:10.15252/emmm.201708791.
[33]
Parys JB, Bultynck G, Vervliet T.IP(3) receptor biology and endoplasmic reticulum calcium dynamics in cancer[J].Prog Mol Subcell Biol2021(59):215-237.DOI:10.1007/978-3-030-67696-4_11.
[34]
Xu K, Chen G, Li X,et al.MFN2 suppresses cancer progression through inhibition of mTORC2/Akt signaling[J].Sci Rep2017(7):41718.DOI:10.1038/srep41718.
[35]
Rimessi A, Pedriali G, Vezzani B,et al.Interorganellar calcium signaling in the regulation of cell metabolism:a cancer perspective[J].Semin Cell Dev Biol2020(98):167-180.DOI:10.1016/j.semcdb.2019.05.015.
[36]
Rong YP, Bultynck G, Aromolaran AS,et al.The BH4 domain of Bcl-2 inhibits ER calcium release and apoptosis by binding the regulatory and coupling domain of the IP3 receptor[J].Proc Natl Acad Sci U S A2009106(34):14397-14402.DOI:10.1073/pnas.0907555106.
[37]
Wu L, Zhang D, Zhou L, et al. FUN14 domain-containing 1 promotes breast cancer proliferation and migration by activating calcium-NFATC1-BMI1 axis[J].EBioMedicine2019(41):384-394.DOI:10.1016/j.ebiom.2019.02.032.
[1] 周密, 张琼, 王强, 覃兆军, 舒爱华. 远端肢体缺血后处理通过线粒体自噬减轻大鼠局灶型脑缺血再灌注损伤的研究[J]. 中华危重症医学杂志(电子版), 2020, 13(04): 241-246.
[2] 张永博, 张亮, 陈浏阳, 戴睿, 孙华, 杨盛, 孟博, 彭晴. 线粒体与椎间盘退变[J]. 中华损伤与修复杂志(电子版), 2023, 18(03): 265-269.
[3] 王超臣, 张培建. 线粒体自噬在肝相关疾病中的作用[J]. 中华普通外科学文献(电子版), 2013, 07(05): 397-399.
[4] 冯同, 代文静, 李万成. 线粒体质量控制在慢性阻塞性肺疾病作用机制的研究进展[J]. 中华肺部疾病杂志(电子版), 2022, 15(02): 287-289.
[5] 王瑶, 王震, 钱叶本. 基于线粒体自噬相关基因构建肝细胞癌患者预后风险模型[J]. 中华肝脏外科手术学电子杂志, 2022, 11(04): 380-385.
[6] 魏丽凤, 张先闻, 王琳. 线粒体自噬调控足细胞损伤的机制研究进展[J]. 中华肾病研究电子杂志, 2020, 09(06): 275-278.
[7] 阳莹, 崔亚梅, 邵强, 赵宁, 陶文强, 陈家泉, 徐泽尧, 钱克俭, 刘芬. 线粒体自噬对肺泡巨噬细胞焦亡的调控作用及其机制[J]. 中华重症医学电子杂志, 2023, 09(01): 69-77.
阅读次数
全文


摘要