[1] |
Poston CN, Krishnan SC, Bazemore-Walker CR.In-depth proteomic analysis of mammalian mitochondria-associated membranes(MAM)[J]. J Proteomics, 2013(79):219-230.DOI: 10.1016/j.jprot.2012.12.018.
|
[2] |
Barazzuol L, Giamogante F, Calì T.Mitochondria associated membranes(MAMs):architecture and physiopathological role[J]. Cell Calcium, 2021(94):102343.DOI: 10.1016/j.ceca.2020.102343.
|
[3] |
Yang JY, Yang WY. Bit-by-bit autophagic removal of parkin-labelled mitochondria[J]. Nat Commun, 2013(4):2428.DOI: 10.1038/ncomms3428.
|
[4] |
Kornmann B, Currie E, Collins SR, et al. An ER-mitochondria tethering complex revealed by a synthetic biology screen[J]. Science, 2009, 325(5939):477-481.DOI: 10.1126/science.1175088.
|
[5] |
Gelmetti V, De Rosa P, Torosantucci L,et al.PINK1 and BECN1 relocalize at mitochondria-associated membranes during mitophagy and promote ER-mitochondria tethering and autophagosome formation[J]. Autophagy, 2017, 13(4):654-669.DOI: 10.1080/15548627.2016.1277309.
|
[6] |
Pickrell AM, Youle RJ.The roles of PINK1,parkin,and mitochondrial fidelity in Parkinson's disease[J]. Neuron, 2015, 85(2):257-273.DOI: 10.1016/j.neuron.2014.12.007.
|
[7] |
Birgisdottir ÅB, Lamark T, Johansen T.The LIR motif-crucial for selective autophagy[J]. J Cell Sci, 2013, 126(Pt 15):3237-3247.DOI: 10.1242/jcs.126128.
|
[8] |
Wu W, Lin C, Wu K, et al. FUNDC1 regulates mitochondrial dynamics at the ER-mitochondrial contact site under hypoxic conditions[J]. EMBO J, 2016, 35(13):1368-1384.DOI: 10.15252/embj.201593102.
|
[9] |
Li W, Zhang X, Zhuang H,et al.MicroRNA-137 is a novel hypoxia-responsive microRNA that inhibits mitophagy via regulation of two mitophagy receptors FUNDC1 and NIX[J]. J Biol Chem, 2014, 289(15):10691-10701.DOI: 10.1074/jbc.M113.537050.
|
[10] |
Mercer TJ, Gubas A, Tooze SA.A molecular perspective of mammalian autophagosome biogenesis[J]. J Biol Chem, 2018, 293(15):5386-5395.DOI: 10.1074/jbc.R117.810366.
|
[11] |
de Brito OM, Scorrano L.Mitofusin 2 tethers endoplasmic reticulum to mitochondria[J]. Nature, 2008, 456(7222):605-610.DOI: 10.1038/nature07534.
|
[12] |
Missiroli S, Patergnani S, Caroccia N,et al.Mitochondria-associated membranes (MAMs) and inflammation[J]. Cell Death Dis, 2018, 9(3):329.DOI: 10.1038/s41419-017-0027-2.
|
[13] |
Zhou R, Yazdi AS, Menu P,et al.A role for mitochondria in NLRP3 inflammasome activation[J]. Nature, 2011, 469(7329):221-225.DOI: 10.1038/nature09663.
|
[14] |
Qu C, Li Y, Li Y,et al.Full-length MAVS,a mitochondrial antiviral-signaling protein,inhibits hepatitis E virus replication,requiring JAK-STAT signaling[J]. Arch Virol, 2022, 167(5):1293-1300.DOI: 10.1007/s00705-022-05415-9.
|
[15] |
Bender S, Reuter A, Eberle F,et al.Activation of type Ⅰ and Ⅲ interferon response by mitochondrial and peroxisomal MAVS and inhibition by hepatitis C virus[J]. PLoS Pathog, 2015, 11(11):e1005264.DOI: 10.1371/journal.ppat.1005264.
|
[16] |
Marquette A, Leborgne C, Schartner V,et al.Peptides derived from the C-terminal domain of HIV-1 viral protein R in lipid bilayers:structure,membrane positioning and gene delivery[J]. Biochim Biophys Acta Biomembr, 2020, 1862(2):183149.DOI: 10.1016/j.bbamem.2019.183149.
|
[17] |
Petrungaro C, Kornmann B.Lipid exchange at ER-mitochondria contact sites:a puzzle falling into place with quite a few pieces missing[J]. Curr Opin Cell Biol, 2019(57):71-76.DOI: 10.1016/j.ceb.2018.11.005.
|
[18] |
Sohn M, Korzeniowski M, Zewe JP,et al.PI(4,5)P2 controls plasma membrane PI4P and PS levels via ORP5/8 recruitment to ER-PM contact sites[J]. J Cell Biol, 2018, 217(5):1797-1813.DOI: 10.1083/jcb.201710095.
|
[19] |
Wang C, Dai X, Wu S,et al.FUNDC1-dependent mitochondria-associated endoplasmic reticulum membranes are involved in angiogenesis and neoangiogenesis[J]. Nat Commun, 2021, 12(1):2616.DOI: 10.1038/s41467-021-22771-3.
|
[20] |
Silva-Palacios A, Zazueta C, Pedraza-Chaverri J.ER membranes associated with mitochondria:possible therapeutic targets in heart-associated diseases[J]. Pharmacol Res, 2020(156):104758.DOI: 10.1016/j.phrs.2020.104758.
|
[21] |
Tan Y, Zhang Z, Zheng C,et al.Mechanisms of diabetic cardiomyopathy and potential therapeutic strategies:preclinical and clinical evidence[J]. Nat Rev Cardiol, 2020, 17(9):585-607.DOI: 10.1038/s41569-020-0339-2.
|
[22] |
Wu S, Lu Q, Ding Y,et al.Hyperglycemia-driven inhibition of AMP-activated protein kinase α2 induces diabetic cardiomyopathy by promoting mitochondria-associated endoplasmic reticulum membranes in vivo[J]. Circulation, 2019, 139(16):1913-1936.DOI: 10.1161/CIRCULATIONAHA.118.033552.
|
[23] |
Wu S, Lu Q, Wang Q,et al.Binding of FUN14 domain containing 1 with inositol 1,4,5-trisphosphate receptor in mitochondria-associated endoplasmic reticulum membranes maintains mitochondrial dynamics and function in hearts in vivo[J]. Circulation, 2017, 136(23):2248-2266.DOI: 10.1161/CIRCULATIONAHA.117.030235.
|
[24] |
Eizirik DL, Pasquali L, Cnop M.Pancreatic β-cells in type 1 and type 2 diabetes mellitus:different pathways to failure[J]. Nat Rev Endocrinol, 2020, 16(7):349-362.DOI: 10.1038/s41574-020-0355-7.
|
[25] |
Rieusset J.Contribution of mitochondria and endoplasmic reticulum dysfunction in insulin resistance:distinct or interrelated roles?[J]. Diabetes Metab, 2015, 41(5):358-368.DOI: 10.1016/j.diabet.2015.02.006.
|
[26] |
Chen Y, Chen J, Zhang C,et al.Deficiency in the short-chain acyl-CoA dehydrogenase protects mice against diet-induced obesity and insulin resistance[J]. FASEB J, 2019, 33(12):13722-13733.DOI: 10.1096/fj.201901474RR.
|
[27] |
Siasos G, Paschou SA, Tousoulis D.Mitochondria and diabetes[J]. Ann Transl Med, 2020, 8(6):262.DOI: 10.21037/atm.2020.03.15.
|
[28] |
Tubbs E, Chanon S, Robert M,et al.Disruption of mitochondria-associated endoplasmic reticulum membrane (MAM) integrity contributes to muscle insulin resistance in mice and humans[J]. Diabetes, 2018, 67(4):636-650.DOI: 10.2337/db17-0316.
|
[29] |
Rieusset J.Role of endoplasmic reticulum-mitochondria communication in type 2 diabetes[J]. Adv Exp Med Biol, 2017(997):171-186.DOI: 10.1007/978-981-10-4567-7_13.
|
[30] |
Wu H, Wang Y, Li W,et al.Deficiency of mitophagy receptor FUNDC1 impairs mitochondrial quality and aggravates dietary-induced obesity and metabolic syndrome[J]. Autophagy, 2019, 15(11):1882-1898.DOI: 10.1080/15548627.2019.1596482.
|
[31] |
Kharitonenkov A, DiMarchi R.Fibroblast growth factor 21 night watch:advances and uncertainties in the field[J]. J Intern Med, 2017, 281(3):233-246.DOI: 10.1111/joim.12580.
|
[32] |
Jimenez V, Jambrina C, Casana E,et al.FGF21 gene therapy as treatment for obesity and insulin resistance[J]. EMBO Mol Med, 2018, 10(8):e8791.DOI: 10.15252/emmm.201708791.
|
[33] |
Parys JB, Bultynck G, Vervliet T.IP(3) receptor biology and endoplasmic reticulum calcium dynamics in cancer[J]. Prog Mol Subcell Biol, 2021(59):215-237.DOI: 10.1007/978-3-030-67696-4_11.
|
[34] |
Xu K, Chen G, Li X,et al.MFN2 suppresses cancer progression through inhibition of mTORC2/Akt signaling[J]. Sci Rep, 2017(7):41718.DOI: 10.1038/srep41718.
|
[35] |
Rimessi A, Pedriali G, Vezzani B,et al.Interorganellar calcium signaling in the regulation of cell metabolism:a cancer perspective[J]. Semin Cell Dev Biol, 2020(98):167-180.DOI: 10.1016/j.semcdb.2019.05.015.
|
[36] |
Rong YP, Bultynck G, Aromolaran AS,et al.The BH4 domain of Bcl-2 inhibits ER calcium release and apoptosis by binding the regulatory and coupling domain of the IP3 receptor[J]. Proc Natl Acad Sci U S A, 2009, 106(34):14397-14402.DOI: 10.1073/pnas.0907555106.
|
[37] |
Wu L, Zhang D, Zhou L, et al. FUN14 domain-containing 1 promotes breast cancer proliferation and migration by activating calcium-NFATC1-BMI1 axis[J]. EBioMedicine, 2019(41):384-394.DOI: 10.1016/j.ebiom.2019.02.032.
|