切换至 "中华医学电子期刊资源库"

中华诊断学电子杂志 ›› 2024, Vol. 12 ›› Issue (02) : 133 -137. doi: 10.3877/cma.j.issn.2095-655X.2024.02.013

综述

调节性B细胞在多发性骨髓瘤中的研究进展
陆天1, 孙道萍2,()   
  1. 1. 272013 济宁医学院临床医学院
    2. 272011 济宁市第一人民医院血液内科
  • 收稿日期:2023-11-05 出版日期:2024-05-26
  • 通信作者: 孙道萍
  • 基金资助:
    山东省自然科学基金(ZR2020MH207,ZR2020MH251)

Research progress of regulatory B cells in multiple myeloma

Tian Lu1, Daoping Sun2,()   

  1. 1. College of Clinical Medicine, Jining Medical University, Jining 272013, China
    2. Department of Hematology, Jining First People′s Hospital, Jining 272011, China
  • Received:2023-11-05 Published:2024-05-26
  • Corresponding author: Daoping Sun
引用本文:

陆天, 孙道萍. 调节性B细胞在多发性骨髓瘤中的研究进展[J]. 中华诊断学电子杂志, 2024, 12(02): 133-137.

Tian Lu, Daoping Sun. Research progress of regulatory B cells in multiple myeloma[J]. Chinese Journal of Diagnostics(Electronic Edition), 2024, 12(02): 133-137.

多发性骨髓瘤(MM)是一种骨髓浆细胞恶性增殖性疾病。免疫抑制性微环境是导致MM患者抗肿瘤免疫监视功能受损,恶性浆细胞免疫逃逸的重要机制之一。调节性免疫细胞被认为是免疫抑制性微环境的重要组成部分,其中调节性B细胞(Bregs)是近年来发现的一种特殊类型的B细胞,可通过分泌多种抑制性可溶性细胞因子及与细胞间直接接触而发挥免疫抑制作用。MM骨髓微环境中Bregs的比例升高,可能通过分泌IL-10、抑制自然杀伤细胞功能等机制参与免疫抑制性骨髓微环境的形成,进而影响MM的治疗反应和预后,Bregs有望成为MM的潜在免疫治疗靶点。笔者主要就Bregs的表型、来源、免疫调节机制及其在MM中的研究进展进行综述。

Multiple myeloma (MM) is a malignant proliferative disorder of bone marrow plasma cells. Suppressive immune microenvironment is one of the important mechanisms for the impaired anti-tumor immune surveillance in MM patients, leading to the immune escape of malignant plasma cells. Regulatory immune cells are considered to be an important part of the suppressive immune microenvironment, and regulatory B cells (Bregs), as a special type of B cells discovered in recent years, can exert immunosuppressive effects mainly through the secretion of various inhibitory soluble cytokines and direct contact with cells. The increased proportion of Bregs in the bone marrow microenvironment of MM may participate in the formation of immunosuppressive bone marrow microenvironment by screting IL-10 and inhibiting the function of natural killer cells, thereby affecting the therapeutic response and prognosis of MM, so Bregs is expected to become a potential immunotherapeutic target of MM. This article mainly reviews the phenotype, source, immunomodulatory mechanisms and research progress of Bregs in MM.

[1]
Boussi LSAvigan ZMRosenblatt J.Immunotherapy for the treatment of multiple myeloma[J].Front Immunol2022 (13):1027385.DOI:10.3389/fimmu.2022.1027385.
[2]
Zhang LTai YTHo M,et al.Regulatory B cell-myeloma cell interaction confers immunosuppression and promotes their survival in the bone marrow milieu[J].Blood Cancer J20177(3):e547.DOI:10.1038/bcj.2017.24.
[3]
Bartosińska JPurkot JKarczmarczyk A,et al.Differential function of a novel population of the CD19CD24hiCD38hi Bregs in psoriasis and multiple myeloma[J].Cells202110(2):411.DOI:10.3390/cells10020411.
[4]
Tang WLi YZou Z,et al.A stratified therapeutic model incorporated with studies on regulatory B cells for elderly patients with newly diagnosed multiple myeloma[J].Cancer Med202312(3):3054-3067.DOI:10.1002/cam4.5228.
[5]
Wang LFu YChu Y.Regulatory B Cells[J].Adv Exp Med Biol2020(1254):87-103.DOI:10.1007/978-981-15-3532-1_8.
[6]
Michaud DSteward CRMirlekar B,et al.Regulatory B cells in cancer[J].Immunol Rev2021299(1):74-92.DOI:10.1111/imr.12939.
[7]
Yanaba KBouaziz JDHaas KM,et al.A regulatory B cell subset with a unique CD1dhiCD5+ phenotype controls T cell-dependent inflammatory responses[J].Immunity200828(5):639-650.DOI:10.1016/j.immuni.2008.03.017.
[8]
Zhang Y, Li J, Zhou N, et al. The unknown aspect of BAFF:inducing IL-35 production by a CD5+CD1dhiFcγRIIbhi regulatory B-cell subset in lupus[J].J Invest Dermatol2017137(12):2532-2543.DOI:10.1016/j.jid.2017.07.843.
[9]
Lundy SKFox DA.Reduced Fas ligand-expressing splenic CD5 B lymphocytes in severe collagen-induced arthritis[J].Arthritis Res Ther200911(4):R128.DOI:10.1186/ar2795.
[10]
Shalapour SFont-Burgada JDi Caro G,et al.Immunosuppressive plasma cells impede T-cell-dependent immunogenic chemotherapy[J].Nature2015521(7550):94-98.DOI:10.1038/nature14395.
[11]
Xu L, Liu X, Liu H, et al. Impairment of granzyme B-producing regulatory B Cells correlates with exacerbated rheumatoid arthritis[J].Front Immunol2017(8):768.DOI:10.3389/fimmu.2017.00768.
[12]
Meng LAlmeida LNClauder AK,et al.Bone marrow plasma cells modulate local myeloid-lineage differentiation via IL-10[J].Front Immunol2019(10):1183.DOI:10.3389/fimmu.2019.01183.
[13]
Wang LFu YChu Y.Regulatory B Cells[J].Adv Exp Med Biol2020(1254):87-103.DOI:10.1007/978-981-15-3532-1_8.
[14]
Rosser EC, Mauri C. Regulatory B cells:origin,phenotype,and function[J].Immunity201542(4):607-612.DOI:10.1016/j.immuni.2015.04.005.
[15]
Lino ACDang VDLampropoulou V,et al.LAG-3 inhibitory receptor expression identifies immunosuppressive natural regulatory plasma cells[J].Immunity201849(1):120-133.e9.DOI:10.1016/j.immuni.2018.06.007.
[16]
Catalán D, Mansilla MA, Ferrier A, et al. Immunosuppressive mechanisms of regulatory B Cells[J].Front Immunol2021(12):611795.DOI:10.3389/fimmu.2021.611795.
[17]
Lee KMStott RTZhao G,et al.TGF-β-producing regulatory B cells induce regulatory T cells and promote transplantation tolerance[J].Eur J Immunol201444(6):1728-1736.DOI:10.1002/eji.201344062.
[18]
Bodogai MMoritoh KLee-Chang C,et al.Immunosuppressive and prometastatic functions of myeloid-derived suppressive cells rely upon education from tumor-associated B Cells[J].Cancer Res201575(17):3456-3465.DOI:10.1158/0008-5472.CAN-14-3077.
[19]
Dambuza IMHe CChoi JK,et al.IL-12p35 induces expansion of IL-10 and IL-35-expressing regulatory B cells and ameliorates autoimmune disease[J].Nat Commun20178(1):719.DOI:10.1038/s41467-017-00838-4.
[20]
Abebe ECDejenie TAAyele TM,et al.The role of regulatory B cells in health and diseases:a systemic review[J].J Inflamm Res2021(14):75-84.DOI:10.2147/JIR.S286426.
[21]
Oleinika KRosser ECMatei DE,et al.CD1d-dependent immune suppression mediated by regulatory B cells through modulations of iNKT cells[J].Nat Commun20189(1):684.DOI:10.1038/s41467-018-02911-y.
[22]
Chen YLi CLu Y,et al.IL-10-producing CD1dhiCD5+ regulatory B Cells may play a critical role in modulating immune homeostasis in silicosis patients[J].Front Immunol2017(8):110.DOI:10.3389/fimmu.2017.00110.
[23]
Bosma AAbdel-Gadir AIsenberg DA,et al.Lipid-antigen presentation by CD1d(+) B cells is essential for the maintenance of invariant natural killer T cells[J].Immunity201236(3):477-490.DOI:10.1016/j.immuni.2012.02.008.
[24]
Ding QYeung MCamirand G,et al.Regulatory B cells are identified by expression of TIM-1 and can be induced through TIM-1 ligation to promote tolerance in mice[J].J Clin Invest2011121(9):3645-3656.DOI:10.1172/JCI46274.
[25]
Cherukuri AMohib KRothstein DM.Regulatory B cells:TIM-1,transplant tolerance,and rejection[J].Immunol Rev2021299(1):31-44.DOI:10.1111/imr.12933.
[26]
Aravena O, Ferrier A, Menon M, et al. TIM-1 defines a human regulatory B cell population that is altered in frequency and function in systemic sclerosis patients[J].Arthritis Res Ther201719(1):8.DOI:10.1186/s13075-016-1213-9.
[27]
Ma LLiu BJiang Z,et al.Reduced numbers of regulatory B cells are negatively correlated with disease activity in patients with new-onset rheumatoid arthritis[J].Clin Rheumatol201433(2):187-195.DOI:10.1007/s10067-013-2359-3.
[28]
Xiao S, Bod L, Pochet N, et al. Checkpoint receptor TIGIT expressed on Tim-1 B Cells regulates tissue inflammation[J].Cell Rep202032(2):107892.DOI:10.1016/j.celrep.2020.107892.
[29]
Xiao XLao XMChen MM,et al.PD-1hi identifies a novel regulatory B-cell population in human hepatoma that promotes disease progression[J].Cancer Discov20166(5):546-559.DOI:10.1158/2159-8290.CD-15-1408.
[30]
Wang XWang GWang Z,et al.PD-1-expressing B cells suppress CD4+ and CD8+ T cells via PD-1/PD-L1-dependent pathway[J].Mol Immunol2019(109):20-26.DOI:10.1016/j.molimm.2019.02.009.
[31]
Khan ARHams EFloudas A,et al.PD-L1hi B cells are critical regulators of humoral immunity[J].Nat Commun2015(6):5997.DOI:10.1038/ncomms6997.
[32]
Jiao Y, Yi M, Xu L, et al. CD38:targeted therapy in multiple myeloma and therapeutic potential for solid cancers[J].Expert Opin Investig Drugs202029(11):1295-1308.DOI:10.1080/13543784.2020.1814253.
[33]
Swamydas MMurphy EVIgnatz-Hoover JJ,et al.Deciphering mechanisms of immune escape to inform immunotherapeutic strategies in multiple myeloma[J].J Hematol Oncol202215(1):17.DOI:10.1186/s13045-022-01234-2.
[34]
Uckun FM.Overcoming the immunosuppressive tumor microenvironment in multiple myeloma[J].Cancers (Basel)202113(9):2018.DOI:10.3390/cancers13092018.
[35]
Tai YTLin LXing L,et al.APRIL signaling via TACI mediates immunosuppression by T regulatory cells in multiple myeloma:therapeutic implications[J].Leukemia201933(2):426-438.DOI:10.1038/s41375-018-0242-6.
[36]
Alexandrakis MG, Goulidaki N, Pappa CA, et al. Interleukin-10 induces both plasma cell proliferation and angiogenesis in multiple myeloma[J].Pathol Oncol Res201521(4):929-934.DOI:10.1007/s12253-015-9921-z.
[37]
Michaud DSteward CRMirlekar B,et al.Regulatory B cells in cancer[J].Immunol Rev2021299(1):74-92.DOI:10.1111/imr.12939.
[38]
Cui JZou ZDuan J,et al.Predictive values of PET/CT in combination with regulatory B Cells for therapeutic response and survival in contemporary patients with newly diagnosed multiple myeloma[J].Front Immunol2021(12):671904.DOI:10.3389/fimmu.2021.671904.
[39]
Prabhala RSamur MKTalluri S,et al.Favorable progression-free survival associated with immune bio-markers modulated by pomalidomide in relapsed/refractory multiple myeloma:an analysis of phase III study[J].Blood2019134 (Supplement_1):1784.DOI:10.1182/blood-2019-131257.
[1] 李康, 冀亮, 赵维, 林乐岷. 自噬在乳腺癌生物学进展中的双重作用[J]. 中华乳腺病杂志(电子版), 2023, 17(04): 195-202.
[2] 胡欧婵, 黄仲英. 不明原因复发性流产患者的治疗研究现状与展望[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(01): 16-22.
[3] 陈观梅, 左璇, 廖宝林. 慢性乙型肝炎新型免疫治疗研究进展[J]. 中华实验和临床感染病杂志(电子版), 2024, 18(01): 7-10.
[4] 路炳通, 侯英荣, 胡永强, 齐雅欣. 血清乳酸脱氢酶、白细胞介素6、降钙素原和超敏C反应蛋白水平变化在多发性骨髓瘤合并细菌感染者预后中的评估价值[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(03): 187-193.
[5] 李晨曦, 谭小容, 魏巍, 李慕秋, 龚忠诚. 三级淋巴结构在口腔癌中的特征及意义[J]. 中华口腔医学研究杂志(电子版), 2023, 17(05): 315-321.
[6] 邓欣怡, 曾振宇, 李晓岚. 细菌群体感应信号对宿主免疫调节机制的研究进展[J]. 中华口腔医学研究杂志(电子版), 2023, 17(02): 140-147.
[7] 尚峰进, 陈陆尧, 刘亚星, 张浩然, 连长红. 肿瘤相关中性粒细胞在胃癌发生发展和治疗中的研究进展[J]. 中华普通外科学文献(电子版), 2024, 18(01): 58-61.
[8] 曹长青, 郭新艳, 高源, 张存, 唐海利, 樊东, 杨小军, 张松, 赵华栋. 肿瘤微环境参与介导HER2阳性乳腺癌曲妥珠单抗耐药的研究进展[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 90-95.
[9] 陈瑜, 尤良顺, 孟海涛, 杨敏. 嵌合抗原受体T细胞治疗多发性骨髓瘤新进展[J]. 中华移植杂志(电子版), 2023, 17(05): 313-320.
[10] 周慧宇, 吕定阳, 双卫兵. 联合系统性免疫炎症指数和预后营养指数预测腹腔镜肾切除术后肾癌患者的预后[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(03): 225-231.
[11] 谭智勇, 付什, 李宁, 王海峰, 王剑松. 膀胱小细胞癌发病机制及其诊疗研究进展[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(02): 183-187.
[12] 郝昭昭, 李多, 南岩东. 以肺磨玻璃结节为表现的肺腺癌发生机制研究进展[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 435-437.
[13] 周艳群, 陈鹏, 刘增慧, 毛晶晶, 黎耀和. 多发性骨髓瘤患者骨髓间充质干细胞衰老关键基因和通路的生物信息学分析与验证[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(05): 274-281.
[14] 谭天华, 宋京海. 肝细胞癌NK细胞及其相关免疫治疗研究进展[J]. 中华肝脏外科手术学电子杂志, 2023, 12(02): 243-246.
[15] 张慧锋, 张弸, 朱晓蔚, 于鸿. 外泌体长链非编码RNA在胃癌中的研究进展[J]. 中华消化病与影像杂志(电子版), 2023, 13(01): 46-49.
阅读次数
全文


摘要