切换至 "中华医学电子期刊资源库"

中华诊断学电子杂志 ›› 2025, Vol. 13 ›› Issue (02) : 89 -96. doi: 10.3877/cma.j.issn.2095-655X.2025.02.004

影像学诊断研究

超声特征联合临床病理早期预测乳腺癌新辅助化疗疗效的应用价值
庞心念1, 蒋添2, 徐贝贝1, 杨天瑶3, 李伟4, 陈禄凑1,()   
  1. 1. 317200 浙江省天台县人民医院超声医学科
    2. 310022 杭州,温州医科大学研究生培养基地
    3. 317200 浙江省天台县人民医院甲乳外科
    4. 310022 杭州,浙江省肿瘤医院超声医学科
  • 收稿日期:2025-02-13 出版日期:2025-05-26
  • 通信作者: 陈禄凑
  • 基金资助:
    浙江省医药卫生科技计划项目(2022KY641,2024KY864)

The value of ultrasound features combined with clinicopathology for early prediction of the efficacy of neoadjuvant chemotherapy in breast cancer

Xinnian Pang1, Tian Jiang2, Beibei Xu1, Tianyao Yang3, Wei Li4, Lucou Chen1,()   

  1. 1. Department of Ultrasound, Tiantai County People′s Hospital, Tiantai 317200, China
    2. Graduate Training Base, Wenzhou Medical University, Hangzhou 310022, China
    3. Department of Thyroid and Breast Surgery,Tiantai County People′s Hospital, Tiantai 317200, China
    4. Department of Ultrasound, Zhejiang Cancer Hospital, Hangzhou 310022, China
  • Received:2025-02-13 Published:2025-05-26
  • Corresponding author: Lucou Chen
引用本文:

庞心念, 蒋添, 徐贝贝, 杨天瑶, 李伟, 陈禄凑. 超声特征联合临床病理早期预测乳腺癌新辅助化疗疗效的应用价值[J/OL]. 中华诊断学电子杂志, 2025, 13(02): 89-96.

Xinnian Pang, Tian Jiang, Beibei Xu, Tianyao Yang, Wei Li, Lucou Chen. The value of ultrasound features combined with clinicopathology for early prediction of the efficacy of neoadjuvant chemotherapy in breast cancer[J/OL]. Chinese Journal of Diagnostics(Electronic Edition), 2025, 13(02): 89-96.

目的

探讨超声联合临床病理因素早期预测乳腺癌患者新辅助化疗(NAC)后获得病理学完全缓解(pCR)的临床应用价值。

方法

回顾性收集2020年10月至2022年3月浙江省肿瘤医院接受NAC治疗的304例乳腺癌患者的影像学及临床资料。依据术后病理结果将乳腺癌患者分为pCR组和非病理学完全缓解(non-pCR)组,比较两组超声及临床病理特征的差异。采用二元Logistic回归分析乳腺癌pCR的独立预测因素,利用受试者操作特征(ROC)曲线分析各模型对pCR的诊断能力。使用R软件建立乳腺癌患者pCR的列线图模型,并通过Hosmer-Lemeshow拟合优度检验评价列线图模型的拟合程度。

结果

NAC前,pCR组与non-pCR组超声在侧方声影、边缘、钙化、血流分数方面比较,均差异有统计学意义(χ2=12.001,18.135,12.991,9.327;均P<0.05)。两个周期NAC后,pCR组肿瘤最大径缩小率大于non-pCR组,差异具有统计学意义(Z=4.182,P<0.01)。NAC前,两组患者在临床T分期、雌激素受体(ER)表达、孕激素受体(PR)表达、人表皮生长因子受体2(HER2)表达比较,均差异有统计学意义(χ2=8.553,23.293,30.333,38.384;均P<0.05)。二元Logistic回归分析显示,侧方声影(OR=2.782,95%CI:1.534~5.045)、微钙化(OR=0.395,95%CI=0.170~0.920)、毛刺/蟹足样边缘(OR=0.244,95%CI:0.104~0.572)、血流分数(OR=0.527,95%CI:0.295~0.941)、临床T分期[T2OR=0.371,95%CI:0.153~0.902)、T3OR=0.212,95%CI:0.066~0.684)、T4OR=0.146,95%CI:0.039~0.555)]、最大径缩小率(OR=5.988,95%CI:1.923~18.645)、HER2表达(OR=4.977,95%CI:2.740~9.041)是乳腺癌pCR的独立预测因素(均P<0.05)。基于上述因素构建联合模型,预测pCR的ROC曲线下面积为0.821(95%CI:0.796~0.872),并构建列线图,Hosmer-Lemeshow拟合优度检验结果显示列线图模型拟合程度较好(χ2=4.144,P>0.05)。

结论

超声测得的侧方声影、钙化、边缘、血流分数、最大径缩小率以及临床T分期、HER2表达是乳腺癌患者NAC后获得pCR的独立预测因素,超声特征联合临床病理特征可为乳腺癌患者临床治疗方案的制定提供影像学依据。

Objective

To investigate the clinical utility of the combination of ultrasound features and clinicopathologic factors for the early prediction of pathologic complete response (pCR) after neoadjuvant chemotherapy (NAC) in breast cancer patients.

Methods

A retrospective was conducted on imaging and clinical data from 304 breast cancer patients who received NAC at Zhejiang Cancer Hospital between October 2020 and March 2022. According to the postoperative pathological results, patients were divided into the pCR group and the non-pathologic complete response (non-pCR) group. The differences in ultrasound and clinical pathological characteristics between the 2 groups were compared. Binary Logistic regression analysis was performed to identify independent predictors of pCR. The diagnostic ability of each model for pCR was evaluated by receiver operating characteristics (ROC) curve. A nomogram model for predicting pCR was established using R software, and the goodness-of-fit was assessed with the Hosmer-Lemeshow test.

Results

There were statistically significant differences in the scores of lateral acoustic shadow, margin characteristics,calcification patterns and blood flow scores between the pCR group and the non-pCR group before NAC (χ2=12.001, 18.135, 12.991, 9.327, all P<0.05). The reduction rate of the maximum tumor diameter in the pCR group was greater than that in the non-pCR group after 2 cycles of NAC, and the difference was statistically significant (Z=4.182, P<0.01). Before NAC, there were statistically significant differences in clinical T stage, estrogen receptor (ER) expression, progesterone receptor (PR) expression and human epidermal grouth factor receptor 2 (HER2) expression between the 2 groups (χ2=8.553, 23.293, 30.333,38.384, all P<0.05). Binary Logistic regression analysis showed that lateral acoustic shadow (OR=2.782,95%CI:1.534-5.045), calcification (OR=0.395, 95%CI:0.170-0.920), margin (OR=0.244, 95%CI:0.104-0.572), blood flow score (OR=0.527, 95%CI:0.295-0.941), clinical T stage [T2OR=0.371,95%CI:0.153-0.902)、T3OR=0.212,95%CI:0.066-0.684)、 T4OR=0.146,95%CI:0.039-0.555)], maximum diameter reduction rate (OR=5.988, 95%CI: 1.923-18.645), and HER2 expression (OR=4.977, 95%CI:2.740-9.041) were independent predictors of pCR in breast cancer (all P<0.05). Based on the above factors, a combined model was constructed, and the area under the ROC curve for predicting pCR was 0.821 (95%CI: 0.796-0.872). A nomogram was also constructed, and the Hosmer-Lemeshow goodness-of-fit test showed that the nomogram model had a good fit (χ2=4.144, P>0.05).

Conclusion

Lateral acoustic shadows, calcifications, margins, blood flow scores, maximum diameter reduction rate, as well as clinical T stage and HER2 expression measured by ultrasound are independent predictors for obtaining pCR after NAC in patients with breast cancer, and ultrasound features combined with clinicopathology factors can provide an imaging basis for the development of clinical treatment plans for patients with breast cancer.

表1 乳腺癌NAC治疗前pCR组和non-pCR组临床资料比较
表2 乳腺癌NAC治疗前pCR组与non-pCR组常规超声特征比较
项目 pCR组(n=99) non-pCR组(n=205) 统计量 P
最大径[mm,M ( Q1,  Q3 )] 29(21,40) 32(24,42) Z=-1.664 0.096
肿瘤位置[例(%)] χ 2=0.668 0.414
 左乳 59(59.60) 112(54.63)
 右乳 40(40.40) 93(45.37)
肿瘤方位[例(%)] χ 2=6.534 0.163
 外上象限 65(65.66) 136(66.34)
 外下象限 14(14.14) 16(7.81)
 内上象限 8(8.08) 22(10.73)
 内下象限 7(7.07) 9(4.39)
 中央区 5(5.05) 22(10.73)
回声[例(%)] χ 2=2.893 0.089
 低回声 89(89.90) 169(82.44)
 混合回声 10(10.10) 36(17.56)
形状[例(%)] 0.662*
 规则 2(2.02) 3(1.46)
 不规则 97(97.98) 202(98.54)
边界[例(%)] 3.434 0.064
 清晰 17(17.17) 20(9.76)
 模糊 82(82.83) 185(90.24)
边缘[例(%)] χ 2=18.135 0.000
 光整 24(24.24) 26(12.68)
 模糊 52(52.53)a 81(39.51)a
 毛刺/蟹足样 23(23.23)b 98(47.81)b
侧方声影[例(%)] χ 2=12.001 0.001
 存在 63(63.64) 87(42.44)
 不存在 36(36.36) 118(57.56)
后方回声[例(%)] χ 2=1.118 0.572
 增强 38(38.38) 73(35.61)
 不变 47(47.48) 93(45.37)
 衰减 14(14.14) 39(19.02)
钙化[例(%)] χ 2=12.991 0.002
 不存在 48(48.48) 93(45.37)
 粗大钙化 24(24.24)a 22(10.73)a
 微钙化 27(27.27)b 90(43.90)b
血流分数[例(%)] χ 2=9.327 0.004
 低分 54(54.55) 76(37.07)
 高分 45(45.45) 129(62.93)
弹性分数[例(%)] χ 2=3.011 0.083
 低分 52(52.53) 86(41.95)
 高分 47(47.47) 119(58.05)
表3 影响乳腺癌患者NAC后获得pCR的多因素Logistic回归分析
图1 乳腺癌患者NAC后获得pCR的风险预测列线图模型 注:NAC为新辅助化疗;pCR为病理学完全缓解;HER2为人表皮生长因子受体2
图2 列线图模型预测乳腺癌患者NAC后获得pCR的校准曲线 注:NAC为新辅助化疗;pCR为病理学完全缓解
表4 乳腺癌患者NAC后获得pCR的预测模型诊断效能对比
图3 52岁女性乳腺癌患者NAC治疗前后超声图像 注:a图超声示结节最大径为34.6mm,边缘模糊,可见微钙化,无侧方声影;b图彩色多普勒血流成像示低血流分数;c图超声示两周期NAC后最大径为31.1mm,最大径缩小率为0.1;NAC为新辅助化疗
[1]
Siegel RL,Kratzer TB,Giaquinto AN,et al.Cancer statistics,2025[J].CA Cancer J Clin,2025,75(1):10-45.DOI:10.3322/caac.21871.
[2]
Liu Z,Li J,Zhao F,et al.Long-term survival after neoadjuvant therapy for triple-negative breast cancer under different treatment regimens:a systematic review and network meta-analysis[J].BMC Cancer,2024,24(1):440.DOI:10.1186/s12885-024-12222-9.
[3]
de Moraes F,de Castro Ribeiro C,PessÔa F,et al. Pathologic response rates in HER2-low versus HER2-zero early breast cancer patients receiving neoadjuvant therapy:a systematic review and meta-analysis[J].Breast Cancer Res,2025,27(1):39.DOI:10.1186/s13058-025-01989-9.
[4]
Talarico M,Derchain S,da Silva LF,et al.Metabolomic profiling of breast cancer patients undergoing neoadjuvant chemotherapy for predicting disease-free and overall survival[J].Int J Mol Sci,2024,25(16):8639.DOI:10.3390/ijms25168639.
[5]
Gradishar WJ,Moran MS,Abraham J,et al.Breast cancer,version 3.2024,NCCN clinical practice guidelines in oncology[J].J Natl Compr Canc Netw,2024,22(5):331-357.DOI:10.6004/jnccn.2024.0035.
[6]
Villacampa G,Navarro V,Matikas A,et al.Neoadjuvant immune checkpoint inhibitors plus chemotherapy in early breast cancer:a systematic review and meta-analysis[J].JAMA Oncol,2024,10(10):1331-1341.DOI:10.1001/jamaoncol.2024.3456.
[7]
Wolf DM, Yau C, Wulfkuhle J, et al. Redefining breast cancer subtypes to guide treatment prioritization and maximize response:predictive biomarkers across 10 cancer therapies[J].Cancer Cell,2022,40(6):609-623.e6.DOI:10.1016/j.ccell.2022.05.005.
[8]
Jiang M, Li CL, Luo XM, et al. Ultrasound-based deep learning radiomics in the assessment of pathological complete response to neoadjuvant chemotherapy in locally advanced breast cancer[J].Eur J Cancer,2021(147):95-105.DOI:10.1016/j.ejca.2021.01.028.
[9]
Lee YJ,Kim SH,Kang BJ,et al.Contrast-enhanced ultrasound for early prediction of response of breast cancer to neoadjuvant chemotherapy[J].Ultraschall Med,2019,40(2):194-204.DOI:10.1055/a-0637-1601.
[10]
Hu Y,Li M,Hu Y,et al.Evaluating dynamic contrast-enhanced MRI for differentiating HER2-zero,HER2-low,and HER2-positive breast cancers in patients undergoing neoadjuvant chemotherapy[J].Eur J Med Res,2025,30(1):132.DOI:10.1186/s40001-024-02188-6.
[11]
Cardoso F,Kyriakides S,Ohno S,et al.Early breast cancer:ESMO clinical practice guidelines for diagnosis,treatment and follow-up[J].Ann Oncol,2019,30(8):1194-1220.DOI:10.1093/annonc/mdz173.
[12]
Zeng Q, Liu L, He C, et al. Early and noninvasive prediction of response to neoadjuvant therapy for breast cancer via longitudinal ultrasound and MR deep learning:a multicentre study[J].Acad Radiol,2025,32(3):1264-1273.DOI:10.1016/j.acra.2024.10.033.
[13]
Dubsky P,Pinker K,Cardoso F,et al.Breast conservation and axillary management after primary systemic therapy in patients with early-stage breast cancer:the Lucerne toolbox[J].Lancet Oncol,2021,22(1):e18-e28.DOI:10.1016/S1470-2045(20)30580-5.
[14]
Adler DD,Carson PL,Rubin JM,et al.Doppler ultrasound color flow imaging in the study of breast cancer:preliminary findings[J].Ultrasound Med Biol,1990,16(6):553-559.DOI:10.1016/0301-5629(90)90020-d.
[15]
Itoh A,Ueno E,Tohno E,et al.Breast disease:clinical application of US elastography for diagnosis[J].Radiology,2006,239(2):341-350.DOI:10.1148/radiol.2391041676.
[16]
Tang L,Jiang L,Shu X,et al.Prognosis and influencing factors of ER-positive,HER2-low breast cancer patients with residual disease after neoadjuvant chemotherapy:a retrospective study[J].Sci Rep,2024,14(1):11761.DOI:10.1038/s41598-024-62592-0.
[17]
《乳腺癌HER2检测指南(2024版)》编写组.乳腺癌HER2检测指南(2024版)[J].中华病理学杂志,2024,53(12):1192-1202.DOI:10.3760/cma.j.cn112151-20241009-00664.
[18]
Vieira D,Wopereis S,Walter LO,et al.Analysis of Ki-67 expression in women with breast cancer:comparative evaluation of two different methodologies by immunophenotyping[J].Pathol Res Pract,2022(230):153750.DOI:10.1016/j.prp.2021.153750.
[19]
《乳腺癌新辅助治疗的病理诊断专家共识(2020版)》编写组.乳腺癌新辅助治疗的病理诊断专家共识(2020版)[J].中华病理学杂志,2020,49(4):296-304.DOI:10.3760/cma.j.cn112151-20200102-00007.
[20]
Pavlov MV,Bavrina AP,Plekhanov VI,et al.Changes in the tumor oxygenation but not in the tumor volume and tumor vascularization reflect early response of breast cancer to neoadjuvant chemotherapy[J].Breast Cancer Res,2023,25(1):12.DOI:10.1186/s13058-023-01607-6.
[21]
岳民璐,姜桂艳.多模态超声动态评估乳腺癌新辅助化疗疗效[J].中国医学影像技术,2024,40(7):1020-1024.DOI:10.13929/j.issn.1003-3289.2024.07.013.
[22]
Wan CF, Liu XS, Wang L, et al. Quantitative contrast-enhanced ultrasound evaluation of pathological complete response in patients with locally advanced breast cancer receiving neoadjuvant chemotherapy[J].Eur J Radiol,2018(103):118-123.DOI:10.1016/j.ejrad.2018.04.005.
[23]
Yoshikawa K,Ishida M,Kan N,et al.Direct comparison of magnetic resonance imaging and pathological shrinkage patterns of triplenegative breast cancer after neoadjuvant chemotherapy[J].World J Surg Oncol,2020,18(1):177.DOI:10.1186/s12957-020-01959-9.
[24]
Humbert O,Lasserre M,Bertaut A,et al.Breast cancer blood flow and metabolism on dual-acquisition 18F-FDG PET:correlation with tumor phenotype and neoadjuvant chemotherapy response[J].J Nucl Med,2018,59(7):1035-1041.DOI:10.2967/jnumed.117.203075.
[25]
Han X, Yang H, Jin S, et al. Prediction of pathological complete response to neoadjuvant chemotherapy in patients with breast cancer using a combination of contrast-enhanced ultrasound and dynamic contrast-enhanced magnetic resonance imaging[J].Cancer Med,2023,12(2):1389-1398.DOI:10.1002/cam4.5019.
[26]
Kwon BR,Shin SU,Kim SY,et al.Microcalcifications and peritumoral edema predict survival outcome in luminal breast cancer treated with neoadjuvant chemotherapy[J].Radiology,2022,304(2):310-319.DOI:10.1148/radiol.211509.
[27]
夏梦楚,孙井军,朱亚楠.超声征象及MRR和TOPK、Ki-67表达与乳腺癌新辅助化疗敏感性的关系[J].临床和实验医学杂志,2022,21(23):2564-2568.DOI:10.3969/j.issn.1671-4695.2022.23.028.
[28]
冯桂英,景香香,钟婷婷.不同病理亚型乳腺黏液癌的超声表现特征[J].医学影像学杂志,2021,31(3):431-434,444.
[29]
Zhu Q,Ademuyiwa FO,Young C,et al.Early assessment window for predicting breast cancer neoadjuvant therapy using biomarkers,ultrasound,and diffuse optical tomography[J].Breast Cancer Res Treat,2021,188(3):615-630.DOI:10.1007/s10549-021-06239-y.
[30]
Pastorello RG, Laws A, Grossmith S, et al. Clinico-pathologic predictors of patterns of residual disease following neoadjuvant chemotherapy for breast cancer[J].Mod Pathol,2021,34(5):875-882.DOI:10.1038/s41379-020-00714-5.
[31]
Wolff AC,Hammond M,Allison KH,et al.Human epidermal growth factor receptor 2 testing in breast cancer:American society of clinical oncology/college of American pathologists clinical practice guideline focused update[J].Arch Pathol Lab Med,2018,142(11):1364-1382.DOI:10.5858/arpa.2018-0902-SA.
[32]
Denkert C,Seither F,Schneeweiss A,et al.Clinical and molecular characteristics of HER2-low-positive breast cancer:pooled analysis of individual patient data from four prospective,neoadjuvant clinical trials[J].Lancet Oncol,2021,22(8):1151-1161.DOI:10.1016/S1470-2045(21)00301-6.
[33]
Du S,Gao S,Zhao R,et al.Contrast-free MRI quantitative parameters for early prediction of pathological response to neoadjuvant chemotherapy in breast cancer[J].Eur Radiol,2022,32(8):5759-5772.DOI:10.1007/s00330-022-08667-w.
[1] 明昊, 宋宏萍, 白誉誉, 党晓智, 赵阳, 程燕妮, 王琪, 肖迎聪. 自动乳腺超声联合临床病理特征预测Luminal B 型乳腺癌术后复发风险的临床研究[J/OL]. 中华医学超声杂志(电子版), 2025, 22(04): 337-347.
[2] 田湘英, 缪华章, 徐玲, 涂艳萍, 张婕, 相光华, 赵贤哲, 尚宁. 卵巢颗粒细胞瘤与卵泡膜-纤维瘤组的超声特征及临床病理分析[J/OL]. 中华医学超声杂志(电子版), 2025, 22(04): 311-320.
[3] 杨宏宇, 李克婷, 孙传青, 任敏. 超声特征联合卵巢恶性肿瘤风险算法预测上皮性卵巢癌亚型的应用价值[J/OL]. 中华医学超声杂志(电子版), 2025, 22(04): 321-327.
[4] 廖佳音, 文华轩, 薛淑贞, 黄慧, 魏英妮, 陈亚岩. 胎儿眼睑及睑裂的产前超声检查[J/OL]. 中华医学超声杂志(电子版), 2025, 22(03): 191-196.
[5] 柴效科, 周海存, 杨涛, 卫翀羿, 魏赟, 张旭, 隆建萍. HER-2状态与AR/p53/Ki-67表达对三阴性乳腺癌新辅助化疗疗效及预后的影响[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(02): 84-91.
[6] 林炳涛, 陈君填. 不同病理类型进展期胃癌患者临床特征及腹腔镜辅助根治术后短期预后的影响因素[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(04): 429-433.
[7] 曾舒昊, 康博禹, 郑高赞, 郑建勇, 丰帆. 青年结直肠癌患者的临床病理特征及预后分析[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(04): 449-452.
[8] 杨娜, 胡刚, 潘越. 保乳术和改良根治术后行新辅助化疗对三阴性乳腺癌血清标志物影响[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(03): 345-348.
[9] 曾弘. 膀胱癌病理报告中常用免疫组化标记物的解读[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(03): 296-302.
[10] 郄云凯, 张哲, 梁山, 吴周亮, 李雨竹, 付晨辉, 沈冲, 胡海龙. 经尿道膀胱肿瘤整块切除术在T1期膀胱癌病理亚分期中的价值[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(03): 303-308.
[11] 张志昱, 张凡, 周奇, 欧阳骏, 林宇鑫, 张学锋. 术前炎性指标对肾透明细胞癌WHO/ISUP病理分级的预测价值[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(03): 323-328.
[12] 丁强, 董翔, 甘卫东. TFE3 重排型肾细胞癌与肾透明细胞癌基于动态增强CT 和临床特征的鉴别[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(03): 329-334.
[13] 李雪青, 张弛, 刘小彭. 前列腺体积大小对机器人辅助腹腔镜下根治性前列腺切除术疗效及术后病理的影响[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(03): 372-376.
[14] 李永红, 王骏, 肖恒军. 2025-NCCN前列腺癌诊治指南更新解读[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(02): 129-133.
[15] 曹聪, 董伟, 徐良斌, 付雍. 成人肝母细胞瘤长期存活一例[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(03): 471-474.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?