[1] |
Chong B, Jayabaskaran J, Jauhari SM,et al.Global burden of cardiovascular diseases:projections from 2025 to 2050[J]. Eur J Prev Cardiol, 2025, 32(11):1001-1015.DOI: 10.1093/eurjpc/zwae281.
|
[2] |
Schunkert H, Di Angelantonio E, Inouye M,et al.Clinical utility and implementation of polygenic risk scores for predicting cardiovascular disease:a clinical consensus statement of the ESC council on cardiovascular genomics,the ESC cardiovascular risk collaboration,and the european association of preventive cardiology[J]. Eur Heart J, 2025, 46(15):1372-1383.DOI: 10.1093/eurheartj/ehae649.
|
[3] |
Netala VR, Teertam SK, Li H,et al.A comprehensive review of cardiovascular disease management:cardiac biomarkers,imaging modalities,pharmacotherapy,surgical interventions,and herbal remedies[J]. Cells, 2024, 13(17):1471.DOI: 10.3390/cells13171471.
|
[4] |
|
[5] |
Sallam A, Chen Q, Razavi A,et al.Failed transcatheter edge-to-edge mitral repair in the United States:reintervention,heart failure,and mortality[J]. JACC Cardiovasc Interv, 2025:S1936-8798(25)01933-8 .DOI: 10.1016/j.jcin.2025.07.025.
|
[6] |
Yu T, Cui H, Chang W,et al.Real-time three-dimensional echocardiography and two-dimensional speckle tracking imaging in the evaluation of left atrial function in patients with triple-vessel coronary artery disease without myocardial infarction[J]. J Clin Ultrasound, 2022, 50(4):445-454.DOI: 10.1002/jcu.23188.
|
[7] |
Holste G, Oikonomou EK, Tokodi M,et al.Complete AI-enabled echocardiography interpretation with multitask deep learning[J]. JAMA, 2025, 334(4):306-318.DOI: 10.1001/jama.2025.8731.
|
[8] |
Capparelli E, Lapia F, Clerici L,et al.Macrovascular involvement in systemic sclerosis:association between carotid ultrasound hemodynamics parameters and digital ulcers[J]. Clin Pract, 2025, 15(8):152.DOI: 10.3390/clinpract15080152.
|
[9] |
Sebastian SA, Co EL, Tidd-Johnson A,et al.Usefulness of carotid ultrasound screening in primary cardiovascular prevention:a systematic review[J]. Curr Probl Cardiol, 2024, 49(1 Pt C):102147.DOI: 10.1016/j.cpcardiol.2023.102147.
|
[10] |
Jiang H, Zhao A, Yang Q,et al.Towards expert-level autonomous carotid ultrasonography with large-scale learning-based robotic system[J]. Nat Commun, 2025, 16(1):7893.DOI: 10.1038/s41467-025-62865-w.
|
[11] |
Osborne-Grinter M, Kwiecinski J, Doris M, et al. Association of coronary artery calcium score with qualitatively and quantitatively assessed adverse plaque on coronary CT angiography in the SCOT-HEART trial[J]. Eur Heart J Cardiovasc Imaging, 2022, 23(9):1210-1221.DOI: 10.1093/ehjci/jeab135.
|
[12] |
Rasmussen LD, Karim SR, Westra J, et al. Clinical likelihood prediction of hemodynamically obstructive coronary artery disease in patients with stable chest pain[J]. JACC Cardiovasc Imaging, 2024, 17(10):1199-1210.DOI: 10.1016/j.jcmg.2024.04.015.
|
[13] |
Miller R, Killekar A, Shanbhag A,et al.Predicting mortality from AI cardiac volumes mass and coronary calcium on chest computed tomography[J]. Nat Commun, 2024, 15(1):2747.DOI: 10.1038/s41467-024-46977-3.
|
[14] |
Pinna A, Boi A, Mannelli L,et al.Machine learning for coronary plaque characterization:a multimodal review of OCT,IVUS,and CCTA[J]. Diagnostics (Basel), 2025, 15(14).DOI: 10.3390/diagnostics15141822.
|
[15] |
Ferencik M, Mayrhofer T, Bittner DO, et al. Use of high-risk coronary atherosclerotic plaque detection for risk stratification of patients with stable chest pain:a secondary analysis of the PROMISE randomized clinical trial[J]. JAMA Cardiol, 2018, 3(2):144-152.DOI: 10.1001/jamacardio.2017.4973.
|
[16] |
Serruys PW, Hara H, Garg S,et al.Coronary computed tomographic angiography for complete assessment of coronary artery disease:JACC state-of-the-art review[J]. J Am Coll Cardiol, 2021, 78(7):713-736.DOI: 10.1016/j.jacc.2021.06.019.
|
[17] |
Kay FU, Canan A, Kukkar V, et al.Diagnostic accuracy of on-premise automated coronary CT angiography analysis based on coronary artery disease reporting and data system 2.0 [J]. Radiology, 2025, 315(2):e242087.DOI: 10.1148/radiol.242087.
|
[18] |
Parlati A, Nardi E, Marzano F, et al. Advancing cardiovascular diagnostics:the expanding role of CMR in heart failure and cardiomyopathies[J]. J Clin Med, 2025, 14(3):865.DOI: 10.3390/jcm14030865.
|
[19] |
De Raffele M, Teis A, Cediel G,et al.Left atrial remodelling and function in various left ventricular hypertrophic phenotypes[J]. Eur Heart J Cardiovasc Imaging, 2025, 26(5):853-862.DOI: 10.1093/ehjci/jeaf033.
|
[20] |
Weiner J, Heinisch C, Oeri S,et al. Focal and diffuse myocardial fibrosis both contribute to regional hypoperfusion assessed by post-processing quantitative-perfusion MRI techniques[J]. Front Cardiovasc Med, 2023(10):1260156.DOI: 10.3389/fcvm.2023.1260156.
|
[21] |
Wang YJ, Yang K, Wen Y,et al.Screening and diagnosis of cardiovascular disease using artificial intelligence-enabled cardiac magnetic resonance imaging[J]. Nat Med, 2024, 30(5):1471-1480.DOI: 10.1038/s41591-024-02971-2.
|
[22] |
Guduguntla V, Weinberg RL.Cardiac PET imaging for coronary artery disease and heart failure:an overview[J]. Heart Fail Clin, 2025, 21(2):175-189.DOI: 10.1016/j.hfc.2024.12.002.
|
[23] |
Alwan M, El Yaman A, Sayed A,et al.Cardiac positron emission tomography/Computed tomography (PET/CT) in current cardiology guidelines[J]. J Nucl Cardiol, 2025(48):102231.DOI: 10.1016/j.nuclcard.2025.102231.
|
[24] |
Douhi A, Al-Enezi MS, Berrahmoune N,et al.Non-calcified active atherosclerosis plaque detection with 18F-NaF and 18F-FDG PET/CT dynamic imaging[J]. Phys Eng Sci Med, 2023, 46(1):295-302.DOI: 10.1007/s13246-023-01218-7.
|
[25] |
Gao M, Wen W, Li H,et al.Coronary sodium [ 18F]fluoride activity predicts outcomes post-CABG:a comparative evaluation with conventional metrics[J]. Eur J Nucl Med Mol Imaging, 2024, 51(11):3235-3251.DOI: 10.1007/s00259-024-06736-4.
|
[26] |
|
[27] |
Yongguang G, Yibing S, Ping X,et al.Diagnostic efficacy of CCTA and CT-FFR based on risk factors for myocardial ischemia [J]. J Cardiothorac Surg, 2022, 17(1):39.DOI: 10.1186/s13019-022-01787-w.
|
[28] |
McCarthy CP, Murphy SP, Amponsah DK,et al.Coronary computed tomographic angiography with fractional flow reserve in patients with type 2 myocardial infarction[J]. J Am Coll Cardiol, 2023, 82(17):1676-1687.DOI: 10.1016/j.jacc.2023.08.020.
|
[29] |
Choi AD.CT-FFR:real-world questions,and the new CAD imaging triple aim[J]. JACC Cardiovasc Imaging, 2023, 16(8):1066-1068.DOI: 10.1016/j.jcmg.2023.03.020.
|
[30] |
Guo B, Jiang M, Guo X,et al.Diagnostic and prognostic performance of artificial intelligence-based fully-automated on-site CT-FFR in patients with CAD[J]. Sci Bull (Beijing), 2024, 69(10):1472-1485.DOI: 10.1016/j.scib.2024.03.053.
|
[31] |
Griffin WF, Choi AD, Riess JS,et al.AI Evaluation of stenosis on coronary CTA,comparison with quantitative coronary angiography and fractional flow reserve:a CREDENCE trial substudy[J]. JACC Cardiovasc Imaging, 2023, 16(2):193-205.DOI: 10.1016/j.jcmg.2021.10.020.
|
[32] |
Jia H, Zhao C, Yu H,et al.Clinical performance of a novel hybrid IVUS-OCT system:a multicentre,randomised,non-inferiority trial (PANOVISION)[J]. EuroIntervention, 2023, 19(4):e318-e320.DOI: 10.4244/EIJ-D-22-01058.
|
[33] |
Zhao J, Fang C, Yu H, et al. OUFR versus FFR for functional assessment of coronary artery stenosis in patients with unstable angina[J]. JACC Asia, 2025, 5(2):231-241.DOI: 10.1016/j.jacasi.2024.10.026.
|
[34] |
Bajaj R, Garcia-Garcia HM, Courtney BK, et al. Multi-modality intravascular imaging for guiding coronary intervention and assessing coronary atheroma:the Novasight Hybrid IVUS-OCT system[J]. Minerva Cardiol Angiol, 2021, 69(6):655-670.DOI: 10.23736/S2724-5683.21.05532-0.
|
[35] |
Cesaro A, Acerbo V, Indolfi C,et al.The clinical relevance of the reversal of coronary atherosclerotic plaque[J]. Eur J Intern Med, 2024(129):16-24.DOI: 10.1016/j.ejim.2024.08.010.
|
[36] |
Xie Y, Han W, Wang S,et al.Advantages of hybrid intravascular ultrasound-optical coherence tomography system in clinical practice[J]. Front Cardiovasc Med, 2025(12):1595889.DOI: 10.3389/fcvm.2025.1595889.
|
[37] |
Thangaraj PM, Benson SH, Oikonomou EK,et al.Cardiovascular care with digital twin technology in the era of generative artificial intelligence[J]. Eur Heart J, 2024, 45(45):4808-4821.DOI: 10.1093/eurheartj/ehae619.
|
[38] |
Khosravi B, Purkayastha S, Erickson BJ,et al.Exploring the potential of generative artificial intelligence in medical image synthesis:opportunities,challenges,and future directions[J]. Lancet Digit Health, 2025:100890.DOI: 10.1016/j.landig.2025.100890.
|
[39] |
Hu Y, Xiang Y, Zhou YJ,et al.AI-based diagnosis of acute aortic syndrome from noncontrast CT[J/OL]. Nat Med, 2025[2028-08-13].published online ahead of print August 20,2025].DOI: 10.1038/s41591-025-03916-z.
URL
|
[40] |
Cunningham JW, Abraham WT, Bhatt AS,et al.Artificial intelligence in cardiovascular clinical trials [J]. J Am Coll Cardiol, 2024, 84(20):2051-2062.DOI: 10.1016/j.jacc.2024.08.069.
|