切换至 "中华医学电子期刊资源库"

中华诊断学电子杂志 ›› 2025, Vol. 13 ›› Issue (03) : 153 -158. doi: 10.3877/cma.j.issn.2095-655X.2025.03.002

生物医学技术

人工智能赋能心血管影像学在早期筛查与亚临床病变评估中的应用进展
王瑞1, 张小杉2, 魏颖3, 王雅晳2,()   
  1. 1010050 呼和浩特,内蒙古医科大学第一临床医学院
    2010050 呼和浩特,内蒙古医科大学附属医院超声科
    3010050 呼和浩特,内蒙古医科大学附属医院中心实验室
  • 收稿日期:2025-08-13 出版日期:2025-08-26
  • 通信作者: 王雅晳
  • 基金资助:
    国家自然科学基金(82360349); 内蒙古自治区自然科学基金项目(2025LHMS08012); 内蒙古自治区科技计划项目(2023YFSH0033); 内蒙古医科大学学科建设项目(YKD20023XK001); 内蒙古医科大学科技创新团队(YKD2022TD024)

The application progress of artificial intelligence empowering cardiovascular imaging in early screening and subclinical lesion assessment

Rui Wang1, Xiaoshan Zhang2, Ying Wei3, Yaxi Wang2,()   

  1. 1The First Clinical Medical College of Inner Mongolia Medical University, Hohhot 010050, China
    2Department of Ultrasound, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
    3Central Laboratory, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
  • Received:2025-08-13 Published:2025-08-26
  • Corresponding author: Yaxi Wang
引用本文:

王瑞, 张小杉, 魏颖, 王雅晳. 人工智能赋能心血管影像学在早期筛查与亚临床病变评估中的应用进展[J/OL]. 中华诊断学电子杂志, 2025, 13(03): 153-158.

Rui Wang, Xiaoshan Zhang, Ying Wei, Yaxi Wang. The application progress of artificial intelligence empowering cardiovascular imaging in early screening and subclinical lesion assessment[J/OL]. Chinese Journal of Diagnostics(Electronic Edition), 2025, 13(03): 153-158.

心血管疾病(CVDs)是由心脏或血管结构功能异常导致的循环系统疾病,影像学检查是其核心诊断手段。传统影像技术(如超声心动图、血管造影CT、磁共振成像及正电子发射断层扫描)在CVDs诊断中发挥关键作用,但受限于分辨率、侵入性或功能评估能力。新兴的血管内超声成像与光学相干断层扫描技术通过融合声学与光学成像优势,实现了血管深层结构可视化及斑块微病变的精准检测,显著提升了CVDs早期诊断与治疗指导效能。近年来,人工智能(AI)驱动的多模态影像融合分析进一步突破技术瓶颈:通过整合多源数据构建风险预测模型,不仅优化诊断准确性,更实现标准化、自动化输出,推动CVDs筛查向大规模、高精度、高效率方向发展。本文系统综述传统及AI赋能影像技术在CVDs诊断中的研究进展,旨在为临床研究提供新思路,并为未来精准诊疗方案的开发提供理论依据。

Cardiovascular diseases (CVDs) are circulatory system disorders caused by abnormal structures or functions of the heart or blood vessels, and imaging examinations are the core diagnostic methods for them. Traditional imaging techniques (such as echocardiography, angiography CT, magnetic resonance imaging, and positron emission tomography) play a key role in the diagnosis of CVDs, but they are limited by resolution, invasiveness or functional assessment capabilities. The emerging intravascular ultrasound imaging and optical coherence tomography technologies, by integrating the advantages of acoustic and optical imaging, have enable visualization of deep vascular structures and the precise detection of plaque microlesions, significantly enhancing the early diagnosis and the efficiency of treatment guidance of CVDs. In recent years, artificial intelligence (AI)-driven multimodal image fusion analysis has further broken through technical bottlenecks: by integrating multi-source data to build risk prediction models, it not only optimizes diagnostic accuracy but also achieves standardized and automated reporting, promoting the development of CVDs screening towards large-scale, high-precision, and high-efficiency directions. This article systematically reviews the research progress of traditional and AI-enabled imaging techniques in the diagnosis of CVDs, aiming to provide new ideas for clinical research and theoretical basis for the development of future precise diagnosis and treatment plans.

图1 CVDs的亚临床病变与影像学评估轴注:1.超声检测内皮功能:超声二维图像上血流信号红色常表示血流朝向探头,蓝色表示远离探头,颜色越亮,速度越快,表示可能存在狭窄;2.CT-FFR测量血流动力:以静息CTA数据为基础,采用计算流体力学的方法模拟冠脉内血流与压力,经图像处理和仿真计算,获取冠脉树上任意点的FFR值;3.CTA识别狭窄及斑块:通过影像后处理技术,将原始扫描数据转化为冠脉三维图像,通过MIP、MRP等技术生成不同角度的血管图像,可以观察到狭窄部位及程度;4.IVUS-OCT一体机提供组织和形态学信息:一体机同时完成IVUS和OCT两项血管内影像检查,左图还能识别脂质池中的钙化并穿透脂质识别外弹性膜,右图可以发现白色血栓并识别薄纤维帽粥样斑块;5.PET/CT评估斑块活性:右图冠脉造影示此处存在狭窄,左图PET/CT箭头处示此处存在18F-NaF高摄取,提示有钙化沉积;6.延迟强化CMR识别心肌纤维化:左图示左室前壁、前间壁变薄,运动功能减退,右图相应区域表现为高信号,可提示此处有心肌梗死。CVDs为心血管疾病;FFR为冠脉血流储备分数;CTA为血管造影CT;MRP为多平面重组;MIP为三维最大密度投影;IVUS为血管内超声成像;OCT为光学相干断层扫描;PET为正电子发射断层成像;18F-NaF为18氟标记氯化钠;CMR为心脏磁共振
[1]
Chong BJayabaskaran JJauhari SM,et al.Global burden of cardiovascular diseases:projections from 2025 to 2050[J].Eur J Prev Cardiol202532(11):1001-1015.DOI:10.1093/eurjpc/zwae281.
[2]
Schunkert HDi Angelantonio EInouye M,et al.Clinical utility and implementation of polygenic risk scores for predicting cardiovascular disease:a clinical consensus statement of the ESC council on cardiovascular genomics,the ESC cardiovascular risk collaboration,and the european association of preventive cardiology[J].Eur Heart J202546(15):1372-1383.DOI:10.1093/eurheartj/ehae649.
[3]
Netala VRTeertam SKLi H,et al.A comprehensive review of cardiovascular disease management:cardiac biomarkers,imaging modalities,pharmacotherapy,surgical interventions,and herbal remedies[J].Cells202413(17):1471.DOI:10.3390/cells13171471.
[4]
Gillam LDMarcoff L.Echocardiography:past,present,and future[J].Circ Cardiovasc Imaging202417(4):e016517.DOI:10.1161/CIRCIMAGING.124.016517.
[5]
Sallam AChen QRazavi A,et al.Failed transcatheter edge-to-edge mitral repair in the United States:reintervention,heart failure,and mortality[J].JACC Cardiovasc Interv2025:S1936-8798(25)01933-8 .DOI:10.1016/j.jcin.2025.07.025.
[6]
Yu TCui HChang W,et al.Real-time three-dimensional echocardiography and two-dimensional speckle tracking imaging in the evaluation of left atrial function in patients with triple-vessel coronary artery disease without myocardial infarction[J].J Clin Ultrasound202250(4):445-454.DOI:10.1002/jcu.23188.
[7]
Holste GOikonomou EKTokodi M,et al.Complete AI-enabled echocardiography interpretation with multitask deep learning[J].JAMA2025334(4):306-318.DOI:10.1001/jama.2025.8731.
[8]
Capparelli ELapia FClerici L,et al.Macrovascular involvement in systemic sclerosis:association between carotid ultrasound hemodynamics parameters and digital ulcers[J].Clin Pract202515(8):152.DOI:10.3390/clinpract15080152.
[9]
Sebastian SACo ELTidd-Johnson A,et al.Usefulness of carotid ultrasound screening in primary cardiovascular prevention:a systematic review[J].Curr Probl Cardiol202449(1 Pt C):102147.DOI:10.1016/j.cpcardiol.2023.102147.
[10]
Jiang HZhao AYang Q,et al.Towards expert-level autonomous carotid ultrasonography with large-scale learning-based robotic system[J].Nat Commun202516(1):7893.DOI:10.1038/s41467-025-62865-w.
[11]
Osborne-Grinter M, Kwiecinski J, Doris M, et al. Association of coronary artery calcium score with qualitatively and quantitatively assessed adverse plaque on coronary CT angiography in the SCOT-HEART trial[J].Eur Heart J Cardiovasc Imaging202223(9):1210-1221.DOI:10.1093/ehjci/jeab135.
[12]
Rasmussen LD, Karim SR, Westra J, et al. Clinical likelihood prediction of hemodynamically obstructive coronary artery disease in patients with stable chest pain[J].JACC Cardiovasc Imaging202417(10):1199-1210.DOI:10.1016/j.jcmg.2024.04.015.
[13]
Miller RKillekar AShanbhag A,et al.Predicting mortality from AI cardiac volumes mass and coronary calcium on chest computed tomography[J].Nat Commun202415(1):2747.DOI:10.1038/s41467-024-46977-3.
[14]
Pinna ABoi AMannelli L,et al.Machine learning for coronary plaque characterization:a multimodal review of OCT,IVUS,and CCTA[J].Diagnostics (Basel)202515(14).DOI:10.3390/diagnostics15141822.
[15]
Ferencik M, Mayrhofer T, Bittner DO, et al. Use of high-risk coronary atherosclerotic plaque detection for risk stratification of patients with stable chest pain:a secondary analysis of the PROMISE randomized clinical trial[J].JAMA Cardiol20183(2):144-152.DOI:10.1001/jamacardio.2017.4973.
[16]
Serruys PWHara HGarg S,et al.Coronary computed tomographic angiography for complete assessment of coronary artery disease:JACC state-of-the-art review[J].J Am Coll Cardiol202178(7):713-736.DOI:10.1016/j.jacc.2021.06.019.
[17]
Kay FUCanan AKukkar V, et al.Diagnostic accuracy of on-premise automated coronary CT angiography analysis based on coronary artery disease reporting and data system 2.0 [J].Radiology2025315(2):e242087.DOI:10.1148/radiol.242087.
[18]
Parlati A, Nardi E, Marzano F, et al. Advancing cardiovascular diagnostics:the expanding role of CMR in heart failure and cardiomyopathies[J].J Clin Med202514(3):865.DOI:10.3390/jcm14030865.
[19]
De Raffele MTeis ACediel G,et al.Left atrial remodelling and function in various left ventricular hypertrophic phenotypes[J].Eur Heart J Cardiovasc Imaging202526(5):853-862.DOI:10.1093/ehjci/jeaf033.
[20]
Weiner JHeinisch COeri S,et al. Focal and diffuse myocardial fibrosis both contribute to regional hypoperfusion assessed by post-processing quantitative-perfusion MRI techniques[J].Front Cardiovasc Med2023(10):1260156.DOI:10.3389/fcvm.2023.1260156.
[21]
Wang YJYang KWen Y,et al.Screening and diagnosis of cardiovascular disease using artificial intelligence-enabled cardiac magnetic resonance imaging[J].Nat Med202430(5):1471-1480.DOI:10.1038/s41591-024-02971-2.
[22]
Guduguntla VWeinberg RL.Cardiac PET imaging for coronary artery disease and heart failure:an overview[J].Heart Fail Clin202521(2):175-189.DOI:10.1016/j.hfc.2024.12.002.
[23]
Alwan MEl Yaman ASayed A,et al.Cardiac positron emission tomography/Computed tomography (PET/CT) in current cardiology guidelines[J].J Nucl Cardiol2025(48):102231.DOI:10.1016/j.nuclcard.2025.102231.
[24]
Douhi AAl-Enezi MSBerrahmoune N,et al.Non-calcified active atherosclerosis plaque detection with 18F-NaF and 18F-FDG PET/CT dynamic imaging[J].Phys Eng Sci Med202346(1):295-302.DOI:10.1007/s13246-023-01218-7.
[25]
Gao MWen WLi H,et al.Coronary sodium [18F]fluoride activity predicts outcomes post-CABG:a comparative evaluation with conventional metrics[J].Eur J Nucl Med Mol Imaging202451(11):3235-3251.DOI:10.1007/s00259-024-06736-4.
[26]
Zhang QHuang ZJin Y,et al.Total-body PET/CT:a role of artificial intelligence?[J].Semin Nucl Med202555(1):124-136.DOI:10.1053/j.semnuclmed.2024.09.002.
[27]
Yongguang GYibing SPing X,et al.Diagnostic efficacy of CCTA and CT-FFR based on risk factors for myocardial ischemia [J].J Cardiothorac Surg202217(1):39.DOI:10.1186/s13019-022-01787-w.
[28]
McCarthy CPMurphy SPAmponsah DK,et al.Coronary computed tomographic angiography with fractional flow reserve in patients with type 2 myocardial infarction[J].J Am Coll Cardiol202382(17):1676-1687.DOI:10.1016/j.jacc.2023.08.020.
[29]
Choi AD.CT-FFR:real-world questions,and the new CAD imaging triple aim[J].JACC Cardiovasc Imaging202316(8):1066-1068.DOI:10.1016/j.jcmg.2023.03.020.
[30]
Guo BJiang MGuo X,et al.Diagnostic and prognostic performance of artificial intelligence-based fully-automated on-site CT-FFR in patients with CAD[J].Sci Bull (Beijing)202469(10):1472-1485.DOI:10.1016/j.scib.2024.03.053.
[31]
Griffin WFChoi ADRiess JS,et al.AI Evaluation of stenosis on coronary CTA,comparison with quantitative coronary angiography and fractional flow reserve:a CREDENCE trial substudy[J].JACC Cardiovasc Imaging202316(2):193-205.DOI:10.1016/j.jcmg.2021.10.020.
[32]
Jia HZhao CYu H,et al.Clinical performance of a novel hybrid IVUS-OCT system:a multicentre,randomised,non-inferiority trial (PANOVISION)[J].EuroIntervention202319(4):e318-e320.DOI:10.4244/EIJ-D-22-01058.
[33]
Zhao J, Fang C, Yu H, et al. OUFR versus FFR for functional assessment of coronary artery stenosis in patients with unstable angina[J].JACC Asia20255(2):231-241.DOI:10.1016/j.jacasi.2024.10.026.
[34]
Bajaj RGarcia-Garcia HM, Courtney BK, et al. Multi-modality intravascular imaging for guiding coronary intervention and assessing coronary atheroma:the Novasight Hybrid IVUS-OCT system[J].Minerva Cardiol Angiol202169(6):655-670.DOI:10.23736/S2724-5683.21.05532-0.
[35]
Cesaro AAcerbo VIndolfi C,et al.The clinical relevance of the reversal of coronary atherosclerotic plaque[J].Eur J Intern Med2024(129):16-24.DOI:10.1016/j.ejim.2024.08.010.
[36]
Xie YHan WWang S,et al.Advantages of hybrid intravascular ultrasound-optical coherence tomography system in clinical practice[J].Front Cardiovasc Med2025(12):1595889.DOI:10.3389/fcvm.2025.1595889.
[37]
Thangaraj PMBenson SHOikonomou EK,et al.Cardiovascular care with digital twin technology in the era of generative artificial intelligence[J].Eur Heart J202445(45):4808-4821.DOI:10.1093/eurheartj/ehae619.
[38]
Khosravi BPurkayastha SErickson BJ,et al.Exploring the potential of generative artificial intelligence in medical image synthesis:opportunities,challenges,and future directions[J].Lancet Digit Health2025:100890.DOI:10.1016/j.landig.2025.100890.
[39]
Hu YXiang YZhou YJ,et al.AI-based diagnosis of acute aortic syndrome from noncontrast CT[J/OL].Nat Med2025[2028-08-13].published online ahead of print August 20,2025].DOI:10.1038/s41591-025-03916-z.

URL    
[40]
Cunningham JWAbraham WTBhatt AS,et al.Artificial intelligence in cardiovascular clinical trials [J].J Am Coll Cardiol202484(20):2051-2062.DOI:10.1016/j.jacc.2024.08.069.
[1] 江瑶, 蒋程, 余翔, 谭莹, 温昕, 温慧莹, 彭桂艳, 李胜利. 基于注意力机制改进的子宫解剖结构检测与分割多任务模型的性能评估[J/OL]. 中华医学超声杂志(电子版), 2025, 22(08): 703-710.
[2] 陈明朗, 许凯, 黄稚熙, 梁博诚, 贺杰, 黄海珊, 马微波, 谭莹, 邹志英, 刘晓棠, 彭桂艳, 陈家希, 钟晓红. MobileNetV4:面向产前超声的主动脉弓分支异常智能诊断研究[J/OL]. 中华医学超声杂志(电子版), 2025, 22(08): 711-720.
[3] 杨丽仙, 黄稚熙, 梁博诚, 欧阳淑媛, 陈明朗, 赵英丽, 马薇波, 缪敬, 王磊, 袁鹰. 基于产前时序超声数据的新生儿出生体重智能预测[J/OL]. 中华医学超声杂志(电子版), 2025, 22(08): 721-732.
[4] 刘晴晴, 俞劲, 徐玮泽, 张志伟, 潘晓华, 舒强, 叶菁菁. OBICnet图像分类模型在小儿先天性心脏病超声筛查中的应用价值[J/OL]. 中华医学超声杂志(电子版), 2025, 22(08): 754-760.
[5] 傅小芳, 杨青翰, 孙昌琴, 豆梦杰, 胡峻溥, 孙灏, 吕发勤. 基于YOLO 11的肢体长骨骨折断端超声检测模型的临床价值[J/OL]. 中华医学超声杂志(电子版), 2025, 22(06): 541-546.
[6] 何冠南, 谭莹, 路玉欢, 蒲斌, 扬水华, 张仁铁, 陈明, 石智红, 钟晓红, 陈曦, 燕柳屹, 李胜利. 人工智能在胎儿超声心动图标准切面质量控制中的多中心应用研究[J/OL]. 中华医学超声杂志(电子版), 2025, 22(05): 388-396.
[7] 陈茵, 谭莹, 谭渤瀚, 何冠南, 王磊, 温昕, 朱巧珍, 梁博诚, 李胜利. 基于YOLO V8 的胎儿脐膨出超声智能质量评估与诊断[J/OL]. 中华医学超声杂志(电子版), 2025, 22(04): 305-310.
[8] 张家乐, 田璐, 伍国胜, 刘莹莹, 李志, 吴琼, 纪世召. 浅析人工智能在海战烧伤诊疗中的应用前景[J/OL]. 中华损伤与修复杂志(电子版), 2025, 20(05): 426-430.
[9] 石爽, 王艺, 史娜, 徐微. 多源信息融合下人工智能在慢性伤口管理中的精准应用与展望[J/OL]. 中华损伤与修复杂志(电子版), 2025, 20(05): 431-435.
[10] 郑仁杰, 张尊庶, 黄陈. 病理组学在胃癌诊治中的应用与挑战[J/OL]. 中华普通外科学文献(电子版), 2025, 19(04): 274-280.
[11] 王明媚, 李勇. 肾盂癌的影像诊断及进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(04): 412-417.
[12] 詹彧鸣, 张翔, 翁山耕. 人工智能在腹膜后肿瘤精准诊疗中的研究进展[J/OL]. 中华疝和腹壁外科杂志(电子版), 2025, 19(04): 371-376.
[13] 李媛媛, 李荣山. 机器学习:肾脏疾病研究与诊疗的新前沿[J/OL]. 中华肾病研究电子杂志, 2025, 14(04): 181-187.
[14] 王玲洁, 王瑷萍, 李朝军, 丁跃有, 杨德业, 赵清, 崔兆强, 王京昆, 王宏宇. 心脏和血管健康技术创新研发策略专家共识(2024第一次报告,上海)[J/OL]. 中华临床医师杂志(电子版), 2025, 19(05): 323-336.
[15] 马也, 瞿航, 王苇. 人工智能在脑血管病影像评价中的研究进展[J/OL]. 中华临床医师杂志(电子版), 2025, 19(03): 211-215.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?