切换至 "中华医学电子期刊资源库"

中华诊断学电子杂志 ›› 2025, Vol. 13 ›› Issue (04) : 230 -235. doi: 10.3877/cma.j.issn.2095-655X.2025.04.003

生物医学技术

基于形态学AI的粪便分析仪在肠道寄生虫筛查中的应用
朱名超1,2,(), 章尹岗2, 朱娅2, 郭飞波2, 徐会荣2, 朱卫芳2, 陈艳丽2, 白玉娇2, 余海燕2, 刘濯2   
  1. 1430065 武汉科技大学职业危害识别与控制湖北省重点实验室
    24317002 天门市第一人民医院(武汉科技大学附属天门医院) 检验科
  • 收稿日期:2025-09-24 出版日期:2025-11-26
  • 通信作者: 朱名超
  • 基金资助:
    武汉科技大学职业危害识别与控制湖北省重点实验室联合基金项目(JF2024-Y20)

Application of a morphological AI fecal analyzer in the screening of intestinal parasites

Mingchao Zhu1,2,(), Yingang Zhang2, Ya Zhu2, Feibo Guo2, Huirong Xu2, Weifang Zhu2, Yanli Chen2, Yujiao Bai2, Haiyan Yu2, Zhuo Liu2   

  1. 1Hubei Provincial Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, China
    2Department of Laboratory, the First People′s Hospital of Tianmen (Tianmen Hospital Affiliated to Wuhan University of Science and Technology), Tianmen 4317002, China
  • Received:2025-09-24 Published:2025-11-26
  • Corresponding author: Mingchao Zhu
引用本文:

朱名超, 章尹岗, 朱娅, 郭飞波, 徐会荣, 朱卫芳, 陈艳丽, 白玉娇, 余海燕, 刘濯. 基于形态学AI的粪便分析仪在肠道寄生虫筛查中的应用[J/OL]. 中华诊断学电子杂志, 2025, 13(04): 230-235.

Mingchao Zhu, Yingang Zhang, Ya Zhu, Feibo Guo, Huirong Xu, Weifang Zhu, Yanli Chen, Yujiao Bai, Haiyan Yu, Zhuo Liu. Application of a morphological AI fecal analyzer in the screening of intestinal parasites[J/OL]. Chinese Journal of Diagnostics(Electronic Edition), 2025, 13(04): 230-235.

目的

探讨具有形态学人工智能(AI)识别图像的粪便分析仪在粪便肠道寄生虫筛查中的应用价值。

方法

采用回顾性分析方法,收集2023年11月至2025年6月天门市第一人民医院检验科接收的、来自天门市各乡镇健康体检人群的粪便样本共9 845份,分别用常规人工显微镜方法与AI识别的粪便分析仪法对寄生虫的检出情况进行比较,并对结果的一致性采用Kappa检验。同时,分析两种方法对不同性别、寄生虫及乡镇人群的检出率。

结果

AI识别共检出寄生虫阳性样本294例,阳性率2.99%(294/9 845),人工复核确认阳性80例,阳性率0.81%,AI识别假阳性率2.19%(214/9 765)。常规人工显微镜检测阳性率0.56%(55/9 845),漏检率31.25%(25/80),两种方法检出率比较差异有统计学意义(χ2=21.330,P<0.01)。AI识别+人工复核与人工镜检在男女寄生虫检出率比较,均无统计学意义(χ2=0.109,0.110;均P>0.05)。单纯AI识别与AI识别+人工复核后寄生虫检出率达到中等一致率(Kappa=0.417,P<0.01),其敏感度高达98.75%,特异度97.80%,阳性预测值26.87%,阴性预测值99.99%;单纯人工显微镜检测与AI识别+人工复核后寄生虫检出率高度一致(Kappa=0.800,P<0.01),其敏感度67.50%,特异度99.99%,阳性预测值98.18%,阴性预测值99.73%。两种方法均能检出华支睾吸虫卵、蓝氏贾第鞭毛虫、蛲虫卵、人芽囊原虫,AI识别还能检出粪类圆线虫、鞭虫卵、钩虫卵、脆弱双核阿米巴、结肠内阿米巴。

结论

应用形态学AI识别的肠道寄生虫筛查检出率高,有效降低漏检风险。但单纯AI识别具有一定的假阳性,需经过人工复核。

Objective

To explore the application value of a fecal analysis instrument with morphological artificial intelligence (AI) recognition in the screening of intestinal parasites in feces.

Methods

A retrospective analysis was conducted using 9 845 fecal specimens collected from health examination participants in various towns of Tianmen City and received by the Laboratory Department of the First People′s Hospital of Tianmen from November 2023 to June 2025. Conventional manual microscopic examination and an AI based fecal analyzer were used to compare the detection rates of intestinal parasites. The consistency between the 2 methods was evaluated using the Kappa test. In addition, detection rates by sex, parasite species, and township distribution were analyzed.

Results

The AI fecal analyzer identified a total of 294 positive samples for parasites, with a positive rate of 2.99% (294/9 845). After manual re-inspection, 80 cases were confirmed positive, with a positive rate of 0.81%. The false positive rate of AI identification was 2.19% (214/9 765). The positive rate of conventional manual microscopic examination was 0.56% (55/9 845), and the missed detection rate was 31.25% (25/80). There was a statistically significant difference in the detection rates between the two methods (χ2=21.330, P<0.01). There was no statistically significant difference in parasite detection rates between males and females for either the AI+ manual re-inspection method or the manual microscopic examination (χ2=0.109, 0.110, all P>0.05). The detection rates of parasites by simple AI identification and AI identification+ manual re-inspection reached a moderate consistency (Kappa=0.417, P<0.01), with a sensitivity of 98.75%, a specificity of 97.80%, a positive predictive value of 26.87%, and a negative predictive value of 99.99%. The detection rates of parasites by simple manual microscopic examination and AI identification+ manual re-inspection were highly consistent (Kappa=0.800, P<0.01), with a sensitivity of 67.50%, a specificity of 99.99%, a positive predictive value of 98.18%, and a negative predictive value of 99.73%. Both methods successfully detected the Clonorchis sinensis eggs, Giardia lamblia, pinworm eggs, and Blastocystis hominis, AI identification was also able to detect the Strongyloides stercoralis, Trichuris trichiura eggs, hookworm eggs, Entamoeba histolytica, and Entamoeba coli.

Conclusions

The morphology-based AI recognition system achieved a high detection rate for intestinal parasite screening and effectively reduced the risk of missed diagnoses. However, relying solely on AI recognition has a certain rate of false-positive results and therefore requiring manual verification.

表1 AI识别后人工复核与人工显微镜检出率比较[例(%)]
图1 天门市各乡镇寄生虫分布情况
表2 AI识别与人工镜检在天门市各乡镇寄生虫检出情况[例(%)]
[1]
Seibold HCzerny SDecke S,et al.A computational reproducibility study of PLOS ONE articles featuring longitudinal data analyses[J].PLoS One202116(6):e0251194.DOI:10.1371/journal.pone.0251194.
[2]
Sinhorin GHCarneiro AFarias B,et al.Intestinal parasite infections associated with sociodemographic and seasonal factors in the Western Amazon[J].Parasitol Res2023122(2):419-423.DOI:10.1007/s00436-022-07736-9.
[3]
Momčilović SCantacessi CArsić-Arsenijević V,et al.Rapid diagnosis of parasitic diseases:current scenario and future needs[J].Clin Microbiol Infect201925(3):290-309.DOI:10.1016/j.cmi.2018.04.028.
[4]
陈颖丹,周长海,朱慧慧,等.2015年全国人体重点寄生虫病现状调查分析[J].中国寄生虫学与寄生虫病杂志202038(1):5-16.DOI:10.12140/j.issn.1000-7423.2020.01.002.
[5]
邹立.人工智能在检验医学中的应用及展望[J].信息化研究202349(5):58-65.
[6]
贾音,康金松,刘善荣.人工智能在检验医学应用研发中的问题剖析及应对策略[J].中华检验医学杂志202144(10):892-896.DOI:10.3760/cma.j.cn114452-20210625-00396.
[7]
Balbino LFAlves Filho AFarias BES,et al.Intestinal protozoan infections and environment conditions among rural schoolchildren in Western Brazilian Amazon[J].Braz J Biol2021(83):e247530.DOI:10.1590/1519-6984.247530.
[8]
中国疾病预防控制中心寄生虫病预防控制所.2015年全国人体重点寄生虫病现状调查报告[M].北京:人民卫生出版社,2018:1-5.
[9]
王强,许静,夏志贵,等.我国重点寄生虫病疫情形势及防控工作重点[J].中国寄生虫学与寄生虫病杂志202442(1):1-7.DOI:10.12140/j.issn.1000-7423.2024.01.001.
[10]
余振芳,李云飞,罗兵,等.基于智能手机的显微成像系统在寄生虫诊断中的研究进展[J].光学仪器202345(6):76-86.DOI:CNKI:SUN:GXYQ.0.2023-06-010.
[11]
伍海英,游晓星,刘彦,等.新发感染性寄生虫诊断方法研究进展[J].中南医学科学杂志201139(3):340-342.DOI:10.3969/j.issn.2095-1116.2011.03.032.
[12]
Ricciardi ANdao M.Diagnosis of parasitic infections:what's going on?[J].J Biomol Screen201520(1):6-21.DOI:10.1177/1087057114548065.
[13]
Weerakoon KGMcManus DP.Cell-free DNA as a diagnostic tool for human parasitic infections[J].Trends Parasitol201632(5):378-391.DOI:10.1016/j.pt.2016.01.006.
[14]
Li L, Qin L, Xu Z, et al. Using artificial intelligence to detect COVID-19 and community-acquired pneumonia based on pulmonary CT:evaluation of the diagnostic accuracy[J].Radiology2020296(2):E65-E71.DOI:10.1148/radiol.2020200905.
[15]
Naing KMBoonsang SChuwongin S,et al.Automatic recognition of parasitic products in stool examination using object detection approach[J].PeerJ Comput Sci2022(8):e1065.DOI:10.7717/peerj-cs.1065.
[16]
朱辉银,李昱婷,祝黛芊,等.人工智能辅助寄生虫虫卵检测平台的建立与应用[J].中国血吸虫病防治杂志202436(6):643-648.DOI:10.16250/j.32.1374.2024094.
[17]
Qian MBChen YDLiang S,et al.The global epidemiology of clonorchiasis and its relation with cholangiocarcinoma[J].Infect Dis Poverty20121(1):4.DOI:10.1186/2049-9957-1-4.
[18]
钱门宝,李石柱,周晓农.我国重要食源性寄生虫病的流行和控制[J].热带病与寄生虫学202119(5):241-244,263.DOI:10.3969/j.issn.1672-2302.2021.05.001.
[19]
张富强,王沛,冯霞,等.全球人群人芽囊原虫感染情况及基因亚型研究进展[J].中国血吸虫病防治杂志202133(1):84-94.DOI:10.16250/j.32.1374.2020083.
[20]
朱名超,朱娅,赵建忠,等.天门市长期住院患者人芽囊原虫感染情况分析[J].中国寄生虫学与寄生虫病杂志202341(1):121-124.DOI:10.12140/j.issn.1000-7423.2023.01.020.
[21]
滕雪娇,储言红,翟铖铖,等.云南腾冲人类免疫缺陷病毒携带者人芽囊原虫感染的流行病学特征及影响因素分析[J].中国寄生虫学与寄生虫病杂志201836(2):129-134.
[22]
王沛,张富强,何波,等.人芽囊原虫体外培养研究进展[J].中国热带医学202020(12):1207-1211.DOI:10.13604/j.cnki.46-1064/r.2020.12.19.
[23]
Taamasri PLeelayoova SRangsin R,et al.Prevalence of Blastocystis hominis carriage in Thai army personnel based in Chonburi,Thailand[J].Mil Med2002167(8):643-646.
[24]
胡缨,李艳文,卢作超.慢性腹泻患者1185例感染人芽囊原虫的临床分析[J].中国热带医学201212(6):713-715,718.DOI:10.13604/j.cnki.46-1064/r.2012.06.022.
[25]
杨振迪,钟彩玲,刘萍,等.基于物种亚型水平对人芽囊原虫致病性及共生性的研究进展[J].热带医学杂志202525(9):1296-1302.
[26]
Parkar U, Traub RJ, Kumar S, et al. Direct characterization of Blastocystis from faeces by PCR and evidence of zoonotic potential[J].Parasitology2007134(Pt 3):359-367.DOI:10.1017/S0031182006001582.
[27]
Faria CP, Zanini GM, Dias GS, et al. Geospatial distribution of intestinal parasitic infections in Rio de Janeiro (Brazil) and its association with social determinants[J].PLoS Negl Trop Dis201711(3):e0005445.DOI:10.1371/journal.pntd.0005445.
[1] 周欣, 梁豪进, 邓振宇, 肖菊花, 周小军. 基于人工智能技术评价江西省孕11~13+6周产前超声筛查质量现状及提出能力提升对策[J/OL]. 中华医学超声杂志(电子版), 2025, 22(09): 850-857.
[2] 张振奇, 齐艺涵, 王璐, 胡紫玥, 李婷婷, 卢漫. 大语言模型DeepSeek-R1在甲状腺超声报告质量控制中的初步应用[J/OL]. 中华医学超声杂志(电子版), 2025, 22(09): 832-837.
[3] 江瑶, 蒋程, 余翔, 谭莹, 温昕, 温慧莹, 彭桂艳, 李胜利. 基于注意力机制改进的子宫解剖结构检测与分割多任务模型的性能评估[J/OL]. 中华医学超声杂志(电子版), 2025, 22(08): 703-710.
[4] 陈明朗, 许凯, 黄稚熙, 梁博诚, 贺杰, 黄海珊, 马微波, 谭莹, 邹志英, 刘晓棠, 彭桂艳, 陈家希, 钟晓红. MobileNetV4:面向产前超声的主动脉弓分支异常智能诊断研究[J/OL]. 中华医学超声杂志(电子版), 2025, 22(08): 711-720.
[5] 杨丽仙, 黄稚熙, 梁博诚, 欧阳淑媛, 陈明朗, 赵英丽, 马薇波, 缪敬, 王磊, 袁鹰. 基于产前时序超声数据的新生儿出生体重智能预测[J/OL]. 中华医学超声杂志(电子版), 2025, 22(08): 721-732.
[6] 刘晴晴, 俞劲, 徐玮泽, 张志伟, 潘晓华, 舒强, 叶菁菁. OBICnet图像分类模型在小儿先天性心脏病超声筛查中的应用价值[J/OL]. 中华医学超声杂志(电子版), 2025, 22(08): 754-760.
[7] 傅小芳, 杨青翰, 孙昌琴, 豆梦杰, 胡峻溥, 孙灏, 吕发勤. 基于YOLO 11的肢体长骨骨折断端超声检测模型的临床价值[J/OL]. 中华医学超声杂志(电子版), 2025, 22(06): 541-546.
[8] 毛俊, 蔡兆伦, 尹晓南, 沈朝勇, 张波. 影像组学预测模型在胃肠间质瘤诊断及预后中的研究进展[J/OL]. 中华普通外科学文献(电子版), 2025, 19(06): 421-425.
[9] 王婷文, 黄家晴, 卞晓洁, 陆晓峰, 管文贤. 基于CiteSpace和VOSviewer对胃肠道恶性肿瘤患者肠内免疫营养支持的文献计量分析[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(06): 693-697.
[10] 左泽平, 宇洪涛, 朱金海, 钱俊杰, 徐秀民, 王一行, 梁朝朝, 郝宗耀. 智能无线腔镜在超微通道经皮肾镜取石术中的临床应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(06): 736-741.
[11] 胡博文, 胡亚兰, 梁辉. 前列腺癌早期筛查的常见方法及最新研究进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(06): 800-808.
[12] 谢钰嵘, 唐流康, 陈明政, 王伟利, 缪文学, 谢峰. 人工智能在肝胆外科临床教学中的应用[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(06): 822-827.
[13] 江学良. 人工智能在炎症性肠病诊疗中的研究进展与应用展望[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(06): 680-680.
[14] 石伯生, 黄涌, 王展. 锁骨下静脉最大直径和塌陷指数与老年胃肠道手术患者麻醉诱导后低血压的关系[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(06): 649-654.
[15] 薛怡宁, 兰雅迪, 刘兆宇, 史磊, 赵琪, 许洪伟. 基于图像的人工智能在胃癌中的研究进展[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(06): 670-675.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?