切换至 "中华医学电子期刊资源库"

中华诊断学电子杂志 ›› 2025, Vol. 13 ›› Issue (04) : 289 -292. doi: 10.3877/cma.j.issn.2095-655X.2025.04.014

诊断学教学

DeepSeek赋能CBL教学在肾内科见习中的应用前景
杨叶猗1, 王建文1, 杨叶蓁2,()   
  1. 1410013 长沙,中南大学湘雅三医院肾内科
    2410013 长沙,中南大学湘雅三医院眼科
  • 收稿日期:2025-07-30 出版日期:2025-11-26
  • 通信作者: 杨叶蓁
  • 基金资助:
    新湘雅人才工程至善领跑计划(20150312)

The application prospects of DeepSeek empowering CBL teaching in nephrology internships

Yeyi Yang1, Jianwen Wang1, Yezhen Yang2,()   

  1. 1Department of Nephrology, the Third Xiangya Hospital of Central South University, Changsha 410013, China
    2Department of Ophthalmology, the Third Xiangya Hospital of Central South University, Changsha 410013, China
  • Received:2025-07-30 Published:2025-11-26
  • Corresponding author: Yezhen Yang
引用本文:

杨叶猗, 王建文, 杨叶蓁. DeepSeek赋能CBL教学在肾内科见习中的应用前景[J/OL]. 中华诊断学电子杂志, 2025, 13(04): 289-292.

Yeyi Yang, Jianwen Wang, Yezhen Yang. The application prospects of DeepSeek empowering CBL teaching in nephrology internships[J/OL]. Chinese Journal of Diagnostics(Electronic Edition), 2025, 13(04): 289-292.

人工智能(AI)技术正深度革新医学教育模式,DeepSeek-R1大语言模型凭借其开源特性、混合专家架构与复杂推理能力,为肾内科以案例为基础学习(CBL)的教学提供了突破传统瓶颈的新路径。传统CBL在肾内科见习中面临病例资源匮乏、个性化指导不足及教学效能低下等挑战。DeepSeek能通过动态病例生成﹑智能互动问答﹑精准打分评估为CBL教学赋能,不仅显著提升教师的教学效率,还有效锻炼了学生的临床决策能力。然而,要审慎应对AI依赖、数据隐私和师生培训等关键挑战。未来可进一步融合虚拟现实多模态技术,构建跨校案例共享系统,这种融合AI的CBL教学模式有望成为培养高素质临床肾脏病专科医生的核心教学工具之一。

Artificial intelligence (AI) technology is deeply revolutionizing the medical education model. The DeepSeek-R1 large language model, with its open-source nature, hybrid expert architecture and complex reasoning ability, provides a new path to break through the traditional bottleneck for case-based learning (CBL) in nephrology education. Traditional CBL faces challenges such as scarce case resources, insufficient personalized guidance and low teaching efficiency during nephrology internships. DeepSeek can empower CBL through dynamic case generation, intelligent interactive question and answer, and precise scoring and evaluation. It not only significantly improves teachers′ teaching efficiency, but also effectively exercises students' clinical decision-making ability. However, key challenges such as AI reliance, data privacy, and the training of teachers and students should be dealt with caution. In the future, virtual reality multimodal technology can be further integrated, and a cross-school case sharing system can be constructed. This AI-integrated CBL model is expected to become one of the core teaching tools for cultivating high-quality clinical nephrology specialists.

[1]
Gibney E.China′s cheap,open AI model DeepSeek thrills scientists[J].Nature2025638(8049):13-14.DOI:10.1038/d41586-025-00229-6.
[2]
吴标良,覃晓洁,王民登,等.PBL与CBL教学法在内科见习教学中的优劣对比[J].右江医学201543(3):387-388.DOI:10.3969/j.issn.1003-1383.2015.03.032.
[3]
Cen XYHua YNiu S,et al.Application of case-based learning in medical student education:a meta-analysis[J].Eur Rev Med Pharmacol Sci202125(8):3173-3181.DOI:10.26355/eurrev_202104_25726.
[4]
Sun LYin CXu Q,et al.Artificial intelligence for healthcare and medical education:a systematic review[J].Am J Transl Res202315(7):4820-4828.
[5]
郭芳芳,李珉珉.狼疮肾炎无创生物标志物的研究进展[J/CD].中华诊断学电子杂志202311(4):271-275.DOI:10.3877/cma.j.issn.2095-655X.2023.04.011.
[6]
Nair SPShah TSeth S,et al.Case based learning:a method for better understanding of biochemistry in medical students[J].J Clin Diagn Res20137(8):1576-1578.DOI:10.7860/JCDR/2013/5795.3212.
[7]
Chao CTWu MYHung KY,et al.Interprofessional differences in multidimensional self-efficacy associated with professional performance in nephrology during case-based learning[J].Kidney Int Rep20249(4):877-887.DOI:10.1016/j.ekir.2024.01.018.
[8]
张慧敏.DeepSeek-R1是怎样炼成的?[J].深圳大学学报(理工版)202542(2):226-232.DOI:10.3724/SP.J.1249.2025.02226.
[9]
Poo M.Reflections on DeepSeek′s breakthrough[J].Natl Sci Rev202512(3):nwaf044.DOI:10.1093/nsr/nwaf044.
[10]
汪恒,王妍,沈宁,等.人工智能教学病例库在住院医师临床思维培训中的应用[J].医院管理论坛202441(1):60-63.DOI:10.3969/j.issn.1671-9069.2024.01.015.
[11]
Normile D.Chinese firm′s large language model makes a splash[J].Science2025387(6731):238.DOI:10.1126/science.adv9836.
[12]
Miao JThongprayoon CSuppadungsuk S,et al.Integrating retrieval-augmented generation with large language models in nephrology:advancing practical applications[J].Medicina (Kaunas)202460(3):445.DOI:10.3390/medicina60030445.
[13]
吕勇,王钧,樊代明.DeepSeek在临床医学见习教学中的应用[J].医学教育研究与实践202533(4):564-570,602.DOI:10.13555/j.cnki.c.m.e.2025.04.016.
[14]
闫温馨,刘珏,梁万年.DeepSeek赋能全科医学:潜在应用与展望[J].中国全科医学202528(17):2065-2069.DOI:10.12114/j.issn.1007-9572.2025.0023.
[15]
韩仰,冯丹丹,周艳,等.DeepSeek在生理学教学中的实践探索[J].基础医学教育202527(6):543-547.DOI:10.13754/j.issn2095-1450.2025.06.12.
[16]
陈茜.高校部署DeepSeek的不同方案[J].中国教育网络2025(1):12-13.DOI:10.3969/j.issn.1672-9781.2025.01.007.
[17]
Temsah AAlhasan KAltamimi I,et al.DeepSeek in healthcare:revealing opportunities and steering challenges of a new open-source artificial intelligence frontier[J].Cureus202517(2):e79221.DOI:10.3390/medicina60030445.
[18]
Wu JWang ZQin Y.Performance of DeepSeek-R1 and ChatGPT-4o on the Chinese national medical licensing examination:a comparative study[J].J Med Syst202549(1):74.DOI:10.1007/s10916-025-02213-z.
[19]
Zhou M, Pan Y, Zhang Y, et al. Evaluating AI-generated patient education materials for spinal surgeries:comparative analysis of readability and DISCERN quality across ChatGPT and deepseek models[J].Int J Med Inform2025(198):105871.DOI:10.1016/j.ijmedinf.2025.105871.
[20]
Zhang ZZhang ZCZhang SP,et al.Comparative analysis of artificial intelligence tools for the dissemination of colorectal cancer screening guidelines:a novel perspective on early screening education[J].Int J Surg2025111(11):8616-8620.DOI:10.1097/JS9.0000000000002951.
[21]
王成红,唐晓鸿,张柯,等.交互式人工智能虚拟病例系统在诊断学教学中的实践应用[J].中华医学教育探索杂志202120(4):388-391.DOI:10.3760/cma.j.cn116021-20200101-00446.
[22]
潘炎,焦富勇.中国儿童川崎病管理的DeepSeek视角[J].中国当代儿科杂志202527(5):524-528. DOI:10.7499/j.issn.1008-8830.2502042.
[23]
Chen JMiao C.DeepSeek deployed in 90 Chinese tertiary hospitals:how artificial intelligence is transforming clinical practice[J].J Med Syst202549(1):53.DOI:10.1007/s10916-025-02181-4.
[24]
闫温馨,胡健,曾华堂,等.人工智能大语言模型在基层医疗卫生服务中的应用与挑战[J].中国全科医学202528(1):1-6.DOI:10.12114/j.issn.1007-9572.2024.0277.
[25]
Peng Y, Malin BA, Rousseau JF, et al. From GPT to DeepSeek:significant gaps remain in realizing AI in healthcare[J].J Biomed Inform2025(163):104791.DOI:10.1016/j.jbi.2025.104791.
[26]
Li ZShi LPei M,et al.DeepSeek-AI-enhanced virtual reality training for mass casualty management:leveraging machine learning for personalized instructional optimization[J].PLoS One202520(6):e0321352.DOI:10.1371/journal.pone.0321352.
[1] 周欣, 梁豪进, 邓振宇, 肖菊花, 周小军. 基于人工智能技术评价江西省孕11~13+6周产前超声筛查质量现状及提出能力提升对策[J/OL]. 中华医学超声杂志(电子版), 2025, 22(09): 850-857.
[2] 刘真真, 张莉, 陈程, 彭思婷, 赵瑞娜, 董一凡, 吕珂, 朱庆莉, 李建初, 杨筱. 将医疗安全不良事件案例分析融入超声医学课程思政教学的初步探索[J/OL]. 中华医学超声杂志(电子版), 2025, 22(09): 876-880.
[3] 张振奇, 齐艺涵, 王璐, 胡紫玥, 李婷婷, 卢漫. 大语言模型DeepSeek-R1在甲状腺超声报告质量控制中的初步应用[J/OL]. 中华医学超声杂志(电子版), 2025, 22(09): 832-837.
[4] 江瑶, 蒋程, 余翔, 谭莹, 温昕, 温慧莹, 彭桂艳, 李胜利. 基于注意力机制改进的子宫解剖结构检测与分割多任务模型的性能评估[J/OL]. 中华医学超声杂志(电子版), 2025, 22(08): 703-710.
[5] 陈明朗, 许凯, 黄稚熙, 梁博诚, 贺杰, 黄海珊, 马微波, 谭莹, 邹志英, 刘晓棠, 彭桂艳, 陈家希, 钟晓红. MobileNetV4:面向产前超声的主动脉弓分支异常智能诊断研究[J/OL]. 中华医学超声杂志(电子版), 2025, 22(08): 711-720.
[6] 杨丽仙, 黄稚熙, 梁博诚, 欧阳淑媛, 陈明朗, 赵英丽, 马薇波, 缪敬, 王磊, 袁鹰. 基于产前时序超声数据的新生儿出生体重智能预测[J/OL]. 中华医学超声杂志(电子版), 2025, 22(08): 721-732.
[7] 刘晴晴, 俞劲, 徐玮泽, 张志伟, 潘晓华, 舒强, 叶菁菁. OBICnet图像分类模型在小儿先天性心脏病超声筛查中的应用价值[J/OL]. 中华医学超声杂志(电子版), 2025, 22(08): 754-760.
[8] 傅小芳, 杨青翰, 孙昌琴, 豆梦杰, 胡峻溥, 孙灏, 吕发勤. 基于YOLO 11的肢体长骨骨折断端超声检测模型的临床价值[J/OL]. 中华医学超声杂志(电子版), 2025, 22(06): 541-546.
[9] 毛俊, 蔡兆伦, 尹晓南, 沈朝勇, 张波. 影像组学预测模型在胃肠间质瘤诊断及预后中的研究进展[J/OL]. 中华普通外科学文献(电子版), 2025, 19(06): 421-425.
[10] 左泽平, 宇洪涛, 朱金海, 钱俊杰, 徐秀民, 王一行, 梁朝朝, 郝宗耀. 智能无线腔镜在超微通道经皮肾镜取石术中的临床应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(06): 736-741.
[11] 靳翠红, 申英末, 储诚兵. 腹腔镜手术模拟器在腹腔镜下经腹腹膜前疝修补术教学培训中的应用[J/OL]. 中华疝和腹壁外科杂志(电子版), 2025, 19(05): 595-598.
[12] 董艳, 郭继武, 毛杰. 儿童重症急性胰腺炎一例诊治分析并文献复习[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(06): 956-961.
[13] 谢钰嵘, 唐流康, 陈明政, 王伟利, 缪文学, 谢峰. 人工智能在肝胆外科临床教学中的应用[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(06): 822-827.
[14] 薛怡宁, 兰雅迪, 刘兆宇, 史磊, 赵琪, 许洪伟. 基于图像的人工智能在胃癌中的研究进展[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(06): 670-675.
[15] 江学良. 人工智能在炎症性肠病诊疗中的研究进展与应用展望[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(06): 680-680.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?