切换至 "中华医学电子期刊资源库"

中华诊断学电子杂志 ›› 2016, Vol. 04 ›› Issue (04) : 284 -287. doi: 10.3877/cma.j.issn.2095-655X.2016.04.018

所属专题: 文献

综述

高迁移率族蛋白B1在缺血性脑卒中的作用及研究进展
金聪丽1, 周海红1,()   
  1. 1. 524023 湛江,广东医学院附属医院神经内科
  • 收稿日期:2016-05-18 出版日期:2016-11-26
  • 通信作者: 周海红
  • 基金资助:
    广东省科技计划项目(2011B031800390)

Progress of high mobility group box B1 and its relationship in stroke

Congli Jin1, Haihong Zhou1,()   

  1. 1. Department of Neurology, the Affiliated Hospital of Guangdong Medical College, Zhanjiang 524023, China
  • Received:2016-05-18 Published:2016-11-26
  • Corresponding author: Haihong Zhou
  • About author:
    Corresponding author: Zhou Haihong, Email:
引用本文:

金聪丽, 周海红. 高迁移率族蛋白B1在缺血性脑卒中的作用及研究进展[J]. 中华诊断学电子杂志, 2016, 04(04): 284-287.

Congli Jin, Haihong Zhou. Progress of high mobility group box B1 and its relationship in stroke[J]. Chinese Journal of Diagnostics(Electronic Edition), 2016, 04(04): 284-287.

脑卒中后预后很大程度受炎症的影响,高迁移率族蛋白B1(HMGB1)作为促炎因子,参与了神经系统疾病的发生发展,其中在缺血性脑卒中,HMGB1贯穿动脉粥样硬化形成、脑卒中发生、脑卒中修复整个过程,并扮演着了不同的角色。HMGB1通过增加内皮通透性,促炎作用以及促进平滑肌迁移等参与了动脉粥样硬化发展。坏死神经元释放的HMGB1不仅反向导致神经元的坏死,并且作为危险相关分子模式(DAMP)分子放大炎症反应。然而星形胶质细胞通过释放HMGB1增加内源性内皮组细胞(EPCs)的活力,促进脑卒中后的神经血管修复。笔者就HMGB1的结构、功能以及缺血性脑卒中的作用及研究进展做一综述。

Inflammatory cascades have a major impact on outcome and regeneration after ischemic stroke.High mobility group box B1 (HMGB1), a pro-inflammatory cytokine, contributes to the development of atherosclerosis, ischemic brain injury, and neurovascular repair.Meanwhile, it plays a very different role in stroke.HMGB1 participates in progression of atherosclerosis through vascular endothelial hyperpermeability, harmful inflammatory response and migration of smooth muscle cells.HMGB1 is released by necrotic neuronal cells, not only reverses to injury neuronal cell, but as danger-associated molecular patterns (DAMP) to amplify inflammatory response.On the other hand, astrocyte-derived HMGB1 induces the promotion of endogenous EPCs viability and enhances neurovascular repair in post-ischemic.This review mainly focuses on the present research of HMGB1 structure, functions and relationship in stroke.

[1]
Goodwin GH,Sanders C,Johns EW.A new group of chromatin-associated proteins with a high content of acidic and basic amino acids[J]. Eur J Biochem, 1973, 38(1): 14-19.
[2]
Wang FC,Pei JX,Zhu J, et al.Overexpression of HMGB1 A-box reduced lipopolysaccharide-induced intestinal inflammation via HMGB1/TLR4 signaling in vitro[J]. World J Gastroenterol, 2015, 21(25): 7764-7776.
[3]
戚之琳,齐世美,凌烈锋, 等. 瑞香素对HMGB1释放及HMGB1诱发的炎症反应的双重抑制作用[J]. 南方医科大学学报, 2015, 35(11): 1519-1523.
[4]
Liu M,Yu Y,Jiang H, et al.Simvastatin suppresses vascular inflam mation and atherosclerosis in ApoE(-/-) mice by downregulating the HMGB1-RAGE axis[J]. Acta Pharmacol Sin, 2013, 34(6): 830-836.
[5]
Umahara T,Uchihara T,Koyama S, et al.Local extension of HMGB1 in atherosclerotic lesions of human main cerebral and carotid arteries[J]. Histol Histopathol, 2014, 29(2): 235-242.
[6]
de Souza AW,Westra J,Limburg PC, et al.HMGB1 in vascular diseases:Its role in vascular inflammation and atherosclerosis[J]. Autoimmun Rev, 2012, 11(12): 909-917.
[7]
Libby P. Inflammation in atherosclerosis[J]. Nature, 2002, 420(6917): 868-874.
[8]
Yan XX,Lu L,Peng WH, et al.Increased serum HMGB1 level is associated with coronary artery disease in nondiabetic and type 2 diabetic patients[J]. Atherosclerosis, 2009, 205(2): 544-548.
[9]
Chen J,Zhang J,Xu L, et al.Inhibition of neointimal hyperplasia in the rat carotid artery injury model by a HMGB1 inhibitor[J]. Atherosclerosis, 2012, 224(2): 332-339.
[10]
Vogel S,Bodenstein R,Chen Q, et al.Platelet-derived HMGB1 is a critical mediator of thrombosis[J]. J Clin Invest, 2015, 125(12): 4638-4654.
[11]
Moreno JA,Sastre C,Madrigal-Matute J, et al.HMGB1 expression and secretion are increased via TWEAK-Fn14 interaction in ather osclerotic plaques and cultured monocytes[J]. Arterioscler Thromb Vasc Biol, 2013, 33(3): 612-620.
[12]
Hu N,Kong L,Qian A, et al.HMGB1 silencing potentiates the anti-inflammatory effects of sodium ferulate in ox-LDL-Stimulated vascular smooth muscle cells[J]. Cell Biochem Biophys, 2015, 72(1): 297-304.
[13]
Inoue K,Kawahara K,Biswas KK, et al.HMGB1 expression by activated vascular smooth muscle cells in advanced human athero sclerosis plaques[J]. Cardiovasc Pathol, 2007, 16(3): 136-143.
[14]
Zou M,Dong H,Meng X, et al.Store-operated Ca2+ entry plays a role in HMGB1-induced vascular endothelial cell hyperpermeability[J]. PLoS One, 2015, 10(4): e0123432.
[15]
Kanellakis P,Agrotis A,Kyaw TS, et al.High-mobility group box protein 1 neutralization reduces development of diet-induced ather osclerosis in apolipoprotein e-deficient mice[J]. Arterioscler Thromb Vasc Biol, 2011, 31(2): 313-319.
[16]
Bruchfeld A,Wendt M,Bratt J, et al.High-mobility group box-1 protein (HMGB1) is increased in antineutrophilic cytoplasmatic antibody (ANCA)-associated vasculitis with renal manifestations[J]. Mol Med, 2011, 17(1-2): 29-35.
[17]
Hoshina T,Kusuhara K,Ikeda K, et al..High mobility group box 1 (HMGB1) and macrophage migration inhibitory factor (MIF) in Kawasaki disease[J]. Scand J Rheumatol, 2008, 37(6): 445-449.
[18]
Taira T,Matsuyama W,Mitsuyama H, et al.Increased serum high mobility group box-1 level in Churg-Strauss syndrome[J]. Clin Exp Immunol, 2007, 148(2): 241-247.
[19]
Sapojnikova N,Kartvelishvili T,Asatiani N, et al.Correlation between MMP-9 and extracellular cytokine HMGB1 in prediction of human ischemic stroke outcome[J]. Biochim Biophys Acta, 2014, 1842(9): 1379-1384.
[20]
Yang QW,Lu FL,Zhou Y, et al.HMBG1 mediates ischemia-reper fusion injury by TRIF-adaptor independent Toll-like receptor 4 signaling[J]. J Cereb Blood Flow Metab, 2011, 31(2): 593-605.
[21]
Liesz A,Dalpke A,Mracsko E, et al.DAMP signaling is a key pathway inducing immune modulation after brain injury[J]. J Neurosci, 2015, 35(2): 583-598.
[22]
Menini T,Ikeda H,Kimura S, et al.Circulating soluble RAGE increase after a cerebrovascular event[J]. Clin Chem Lab Med, 2014, 52(1): 109-116.
[23]
Zhai DX,Kong QF,Xu WS, et al.RAGE expression is up-regulated in human cerebral ischemia and pMCAO rats[J]. Neurosci Lett, 2008, 445(1): 117-121.
[24]
Zhang J,Wu Y,Weng Z, et al.Glycyrrhizin protects brain against ischemia-reperfusion injury in mice through HMGB1-TLR4-IL-17A signaling pathway[J]. Brain Res, 2014(1582): 176-186.
[25]
Muhammad S,Barakat W,Stoyanov S, et al.The HMGB1 receptor RAGE mediates ischemic brain damage[J]. J Neurosci, 2008, 28(46): 12023-12031.
[26]
Qiu J,Xu J,Zheng Y, et al.High-mobility group box 1 promotes metalloproteinase-9 upregulation through Toll-like receptor 4 after cerebral ischemia[J]. Stroke, 2010, 41(9): 2077-2082.
[27]
赵丽丽,程小军,陈珩, 等. 缺血性脑卒中患者颈部血管狭窄的诊断及介入治疗[J/CD]. 中华诊断学电子杂志, 2014, 2(1): 17-23.
[28]
Borlongan CV,Glover LE,Tajiri N, et al.The great migration of bone marrow-derived stem cells toward the ischemic brain:therapeutic implications for stroke and other neurological disorders[J]. Prog Neurobiol, 2011, 95(2): 213-228.
[29]
Hayakawa K,Pham LD,Katusic ZS, et al.Astrocytic high-mobility group box 1 promotes endothelial progenitor cell-mediated neuro vascular remodeling during stroke recovery[J]. Proc Natl Acad Sci U S A, 2012, 109(19): 7505-7510.
[30]
Schlueter C,Weber H,Meyer B, et al.Angiogenetic signaling through hypoxia:HMGB1:an angiogenetic switch molecule[J]. Am J Pathol, 2005, 166(4): 1259-1263.
[31]
Treutiger CJ,Mullins GE,Johansson AS, et al.High mobility group 1 B-box mediates activation of human endothelium[J]. J Intern Med, 2003, 254(4): 375-385.
[1] 马艳波, 华扬, 刘桂梅, 孟秀峰, 崔立平. 中青年人颈动脉粥样硬化病变的相关危险因素分析[J]. 中华医学超声杂志(电子版), 2023, 20(08): 822-826.
[2] 尚慧娟, 袁晓冬. 机械取栓术后应用依达拉奉右崁醇对急性缺血性脑卒中预后的改善[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 295-301.
[3] 刘宏达, 邵祥忠, 李林, 许小伟. 海安地区动脉粥样硬化性脑梗死患者CYP2C19基因多态性及与氯吡格雷抵抗的关系[J]. 中华神经创伤外科电子杂志, 2023, 09(04): 234-240.
[4] 胡霁云, 谢树才, 张丽娜. S100钙结合蛋白B与重症神经研究进展[J]. 中华重症医学电子杂志, 2023, 09(03): 298-303.
[5] 廖家权, 吴波, 唐昌敏. 体外冲击波联合肌电生物反馈对脑卒中后足下垂的影响[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 286-292.
[6] 许方军, 曹晓光, 王修敏, 董学超, 刘云卫, 彭云飞, 周康. 虚拟情景互动技术联合肩胛骨运动控制强化训练对偏瘫患者上肢功能及日常生活活动能力的影响[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(04): 222-228.
[7] 杨梦琦, 马慧芬, 訾阳, 王楠, 杜冰玉, 常万鹏, 于少泓. 马黛茶对脑血管疾病防治作用的研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(04): 235-240.
[8] 侯牧韶, 刘子渤, 李红玲. 局部振动疗法治疗脑卒中后运动障碍的研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(04): 246-250.
[9] 李世凯, 梁佳, 何艳艳, 于毅, 李天晓, 常金龙, 贺迎坤. 兔颈动脉粥样硬化性狭窄模型在介入治疗的应用进展[J]. 中华介入放射学电子杂志, 2023, 11(04): 357-362.
[10] 孙畅, 赵世刚, 白文婷. 脑卒中后认知障碍与内分泌激素变化的关系[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 471-476.
[11] 张许平, 刘佳成, 张舸, 杜艳姣, 李韶, 商丹丹, 王浩, 李艳, 段智慧. CYP2C19基因多态性联合血栓弹力图指导大动脉粥样硬化型非致残性缺血性脑血管事件患者抗血小板治疗的效果[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 477-481.
[12] 杨海华, 袁景林, 周晓梅, 牛军伟. RNF213基因突变所致烟雾病一家系病例临床分析并文献复习[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 495-498.
[13] 李昕, 李永凯, 江树青, 夏来百提姑·赛买提, 杨建中. 急性缺血性脑卒中静脉溶栓后出血转化相关危险因素分析[J]. 中华脑血管病杂志(电子版), 2023, 17(04): 331-336.
[14] 邓颖, 黄山, 胡慧秀, 孙超. 老年缺血性脑卒中患者危险因素聚集情况分析[J]. 中华脑血管病杂志(电子版), 2023, 17(04): 344-349.
[15] 祁研, 张岩, 陈雪, 刘颖, 史楠. 探讨高低频交互rTMS对老年脑卒中偏瘫患者肢体功能、吞咽功能及日常生活活动能力的影响[J]. 中华脑血管病杂志(电子版), 2023, 17(04): 359-363.
阅读次数
全文


摘要