切换至 "中华医学电子期刊资源库"

中华诊断学电子杂志 ›› 2018, Vol. 06 ›› Issue (03) : 202 -206. doi: 10.3877/cma.j.issn.2095-655X.2018.03.013

所属专题: 文献

基础研究

7,8-二羟基黄酮对自发性高血压大鼠血管平滑肌细胞表型转化的影响
姚天成1, 王伟杰1, 杨莹莹1, 郑祥珍1, 刘海青1, 王炳香1,()   
  1. 1. 271000 泰安,泰山医学院基础医学院生理学教研室
  • 收稿日期:2018-02-08 出版日期:2018-08-26
  • 通信作者: 王炳香
  • 基金资助:
    国家自然科学基金(81500363); 国家大学生创新创业训练计划项目(201610439028); 山东省自然科学基金(ZR2017LC009); 山东省高等学校科技计划(J17KA138); 泰安市科技局引导项目(2016NS1060)

Effect of 7, 8-dihydroxyflavone on the phenotype transformation of vascular smooth muscle cells in spontaneously hypertensive rats

Tiancheng Yao1, Weijie Wang1, Yingying Yang1, Xiangzhen Zheng1, Haiqing Liu1, Bingxiang Wang1,()   

  1. 1. Department of Physiology, Basic Medical College of Taishan Medical University, Tai′an 271000, China
  • Received:2018-02-08 Published:2018-08-26
  • Corresponding author: Bingxiang Wang
  • About author:
    Corresponding author: Wang Bingxiang, Email:
引用本文:

姚天成, 王伟杰, 杨莹莹, 郑祥珍, 刘海青, 王炳香. 7,8-二羟基黄酮对自发性高血压大鼠血管平滑肌细胞表型转化的影响[J/OL]. 中华诊断学电子杂志, 2018, 06(03): 202-206.

Tiancheng Yao, Weijie Wang, Yingying Yang, Xiangzhen Zheng, Haiqing Liu, Bingxiang Wang. Effect of 7, 8-dihydroxyflavone on the phenotype transformation of vascular smooth muscle cells in spontaneously hypertensive rats[J/OL]. Chinese Journal of Diagnostics(Electronic Edition), 2018, 06(03): 202-206.

目的

探讨7,8-二羟基黄酮(7,8-DHF)对自发性高血压大鼠(SHR)血管平滑肌细胞(VSMCs)表型转化的影响。

方法

用Western blotting法检测清洁级雄性Wistar-Kyoto(WKY)大鼠及SHR胸主动脉和VSMCs中平滑肌肌动蛋白(SM-α-actin)及增殖细胞核抗原(PCNA)的蛋白表达水平;用不同浓度7,8-DHF和(或)TrkB特异性抑制剂ANA-12处理SHR胸主动脉源性VSMCs,用CCK-8法检测VSMCs活性;用Western blotting法检测7,8-DHF和(或)ANA-12处理SHR胸主动脉源性VSMCs后SM-α-actin和PCNA的蛋白表达水平。使用Prism 5统计软件,应用独立样本t检验或单因素方差分析进行统计学分析。

结果

同WKY大鼠比较,SHR胸主动脉组织中SM-α-actin的蛋白表达水平显著降低[(0.72±0.06),(0.41±0.08);t=6.35,P<0.05],PCNA的蛋白表达水平则明显升高[(0.51±0.09),(0.99±0.15);t=6.43,P<0.05]。SHR胸主动脉源性VSMCs中SM-α-actin的蛋白表达水平较WKY大鼠显著降低[(0.71±0.05),(0.36±0.04);t=11.12,P<0.01], PCNA的蛋白表达水平则明显升高[(0.69±0.07),(1.05±0.08);t=8.49,P<0.05]。7,8-DHF能明显抑制SHR胸主动脉源性VSMCs增殖活性,并呈浓度依赖性(F=17.49,P<0.01),给予ANA-12(10μmol/L)处理后,SHR胸主动脉源性VSMCs的增殖活性较单独给予7,8-DHF组显著升高[(0.52±0.08),(0.86±0.14);t=5.13,P<0.01];ANA-12能够显著消除7,8-DHF引起的SHR胸主动脉源性VSMCs中SM-α-actin蛋白表达水平的升高[(0.85±0.13),(0.35±0.15);t=4.37,P<0.01]及PCNA蛋白表达水平的降低[(0.42±0.13),(0.76±0.10);t=3.54,P<0.05]。

结论

7,8-DHF能够有效抑制SHR胸主动脉源性VSMCs由收缩型向增殖型转化,其作用可能是由TrkB受体介导。

Objective

To investigate the effect of 7, 8-dihydroxyflavone (7, 8-DHF) on the phenotypic transformation of vascular smooth muscle cells (VSMCs) in spontaneously hypertensive rats (SHR).

Methods

Western blotting assay was carried out to detect the Wistar-Kyoto rats and SHR′s protein expression of smooth muscle actin (SM-α-actin) and proliferating cell nuclear antigen (PCNA). With the different concentrations of 7, 8-DHF and (or) TrkB specific inhibitor ANA-12, the VSMCs derived from thoracic aortic of SHR were processed and the VSMCs activity was detected by CCK-8 method. Western blotting was used to detect the protein expression levels of SM-α-actin and PCNA after 7, 8-DHF and (or) ANA-12 treated in VSMCs derived from thoracic aortic of SHR. The independent sample t-test and single factor variance analysis were used for statistical comparison.

Results

Compared with WKY, the expression of SM-α-actin in aorta of SHR decreased significantly [(0.72±0.06), (0.41±0.08), t=6.35, P<0.05], while PCNA increased[(0.51±0.09), (0.99±0.15), t=6.43, P<0.05], and so was the case in VSMCs derived from thoracic aortic of SHR, SM-α-actin decreased [(0.71±0.05), (0.36±0.04), t=11.12, P<0.01] and PCNA increased[(0.69±0.07), (1.05±0.08), t=8.49, P<0.05]. The proliferative activity of VSMCs derived from thoracic aortic of SHR was greatly attenuated by 7, 8-DHF in a concentration-dependent manner(F=17.49, P<0.01), which could be enhanced by ANA-12 [ (0.52±0.08), (0.86±0.14), t=5.13, P<0.01]. ANA-12 can significantly weaken the effect of 7, 8-DHF on the expression of SM-α-actin[(0.85±0.13), (0.35±0.15), t=4.37, P<0.01]and PCNA protein[(0.42±0.13), (0.76±0.10), t=3.54, P<0.05]in VSMCs derived from thoracic aortic of SHR.

Conclusion

7, 8-DHF can effectively inhibit the transformation of VSMCs derived from thoracic aortic of SHR from contractile to proliferative type, which may be mediated by TrkB receptor.

图1 WKY大鼠及SHR胸主动脉和VSMCs中SM-α-actin和PCNA蛋白免疫印迹图
图2 WKY大鼠及SHR胸主动脉源性VSMCs镜下图像(× 20)
图3 各组SHR胸主动脉源性VSMCs中SM-α-actin和PCNA蛋白免疫印迹图
表1 各组SHR胸主动脉源性VSMCs中SM-α-actin和PCNA蛋白表达水平的比较(±s)
[1]
Sliwa K,Stewart S,Gersh BJ.Hypertension:a global perspective[J].Circulation,2011,123(24):2892-2896.
[2]
Naranjo D,Arkuszewski M,Rudzinski W,et al.Brain ischemia in patients with intracranial hemorrhage:pathophysiological reasoning for aggressive diagnostic management[J].Neuroradiol J,2013,26 (6):610-628.
[3]
Możdżan M,Wierzbowska-Drabik K,Kurpesa M,et al.Echocardiographic indices of left ventricular hypertrophy and diastolic function in hypertensive patients with preserved LVEF classified as dippers and non-dippers[J].Arch Med Sci,2013,9(2):268-275.
[4]
Wang IK,Muo CH,Chang YC,et al.Association between hypertensive disorders during pregnancy and end-stage renal disease:a population-based study[J].CMAJ,2013,185(3):207-213.
[5]
Majesky MW.Developmental basis of vascular smooth muscle diversity[J].Arterioscler Thromb Vasc Biol,2007,27(6):1248-1258.
[6]
Andero R,Daviu N,Escorihuela RM,et al.7,8-dihydroxyflavone,a TrkB receptor agonist,blocks long-term spatial memory impairment caused by immobilization stress in rats[J].Hippocampus,2012,22 (3):399-408.
[7]
Zeng Y,Liu Y,Wu M,et al.Activation of TrkB by 7,8-dihydroxyflavone prevents fear memory defects and facilitates amygdalar synaptic plasticity in aging[J].J Alzheimers Dis,2012,31(4):765-778.
[8]
Chen J,Chua KW,Chua CC,et al.Antioxidant activity of 7,8-dihydroxyflavone provides neuroprotection against glutamate-induced toxicity[J].Neurosci Lett,2011,499(3):181-185.
[9]
Ryu MJ,Kang KA,Piao MJ,et al.7,8-Dihydroxyflavone protects human keratinocytes against oxidative stress-induced cell damage via the ERK and PI3K/Akt-mediated Nrf2/HO-1 signaling pathways[J].Int J Mol Med,2014,33(4):964-970.
[10]
Wang B,Zhang Q,Yao R,et al.7,8-Dihydroxyflavone protects an endothelial cell line from H2O2 damage[J].PLoS One,2015,10 (8):e0135345.
[11]
Park HY,Kim GY,Hyun JW,et al.7,8-Dihydroxyflavone exhibits anti-inflammatory properties by downregulating the NF-kappaB and MAPK signaling pathways in lipopolysaccharide-treated RAW264.7 cells[J].Int J Mol Med,2012,29(6):1146-1152.
[12]
Park HY,Park C,Hwang HJ,et al.7,8-Dihydroxyflavone attenuates the release of pro-inflammatory mediators and cytokines in lipopolysaccharide-stimulated BV2 microglial cells through the suppression of the NF-κB and MAPK signaling pathways[J].Int J Mol Med,2014,33 (4):1027-1034.
[13]
Park HY,Kim GY,Hyun JW,et al.7,8-dihydroxyflavone induces G1 arrest of the cell cycle in U937 human monocytic leukemia cells via induction of the Cdk inhibitor p27 and downregulation of pRB phosphorylation[J].Oncol Rep,2012,28(1):353-357.
[14]
Huai R,Han X,Wang B,et al.Vasorelaxant and antihypertensive effects of 7,8-Dihydroxyflavone[J].Am J Hypertens,2014,27(5):750-760.
[15]
Bennett MR,Sinha S,Owens GK.Vascular Smooth Muscle Cells in Atherosclerosis[J].Circ Res,2016,118(4):692-702.
[16]
张雪,孟强,孙琳.动脉钙化发生机制的研究进展[J/CD].中华诊断学电子杂志,2017,5(4):235-239.
[17]
Shi N,Chen SY.Mechanisms simultaneously regulate smooth muscle proliferation and differentiation[J].J Biomed Res,2014,28(1):40-46.
[18]
Owens GK.Regulation of differentiation of vascular smooth muscle cells[J].Physiol Rev,1995,75(3):487-517.
[19]
Wang SC.PCNA:a silent housekeeper or a potential therapeutic target? [J].Trends Pharmacol Sci,2014,35(4):178-186.
[20]
Zhang L,Xie P,Wang J,et al.Impaired peroxisome proliferator-activated receptor-gamma contributes to phenotypic modulation of vascular smooth muscle cells during hypertension[J].J Biol Chem,2010,285(18):13666-13677.
[21]
Choi JW,Lee J,Park YI.7,8-Dihydroxyflavone attenuates TNF-α-induced skin aging in Hs68 human dermal fibroblast cells via down-regulation of the MAPKs/Akt signaling pathways[J].Biomed Pharmacother,2017(95):1580-1587.
[1] 张刚, 秦勇, 黄超, 薛震, 吕松岑. 基于骨关节炎软骨细胞表型转化的新兴治疗靶点[J/OL]. 中华关节外科杂志(电子版), 2024, 18(03): 352-362.
[2] 刘洋, 盛赵莹, 孙琳琳. 白细胞介素6启动子通过调控人端粒酶逆转录酶减轻细胞炎症和DNA损伤[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(02): 104-110.
[3] 张雪灵, 陈玮彬, 魏雯硕, 陈明, 诸宏伟. 努南综合征的临床特点与治疗效果分析[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(02): 192-199.
[4] 陈嘉婷, 杜美君, 石冰, 黄汉尧. 母体系统性疾病对新生儿唇腭裂发生的影响[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(04): 262-268.
[5] 胡思平, 熊性宇, 徐航, 杨璐. 衰老相关分泌表型因子在前列腺癌发生发展中的作用机制[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 425-434.
[6] 沈琪乐, 赵勤华, 宫素岗, 刘锦铭, 王岚, 邱宏玲. COPD 稳定期患者血清CC16 蛋白表达与肺功能、肺气肿表型的关系分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 690-695.
[7] 刘起帆, 蒋安. 肝硬化门静脉高压症门静脉压力无创测量进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 270-275.
[8] 杨竞, 周光文. 肝硬化门静脉高压症治疗后再出血危险因素分析及预测模型构建[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 296-301.
[9] 张智, 董志伟, 徐祖鑫, 姜莉鑫, 张玉辉, 顾国利. Peutz-Jeghers综合征基因型研究及临床诊治进展[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(01): 6-13.
[10] 胡杰, 蔡国龙. 脓毒症合并低心功能指数患者PiCCO参数的聚类分析[J/OL]. 中华重症医学电子杂志, 2024, 10(01): 25-30.
[11] 刘国龙, 王鹏, 谭超, 杨辉, 彭菊红. 神经外科机器人辅助双通道颅内血肿清除术治疗高血压性脑出血[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(04): 254-256.
[12] 景方坤, 周建波, 王全才, 黄海韬, 李岩峰, 徐杨熙. 神经导航引导下治疗基底节高血压脑出血的短期疗效预测[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(03): 154-159.
[13] 王梦卉, 王梦茹, 骆秦, 朱晴, 李南方. 高血压及原发性醛固酮增多症患者血清钾及低钾血症与心电图左心室肥大的关系[J/OL]. 中华诊断学电子杂志, 2024, 12(01): 18-24.
[14] 刘鑫, 裴思雨, 李志强, 陈成文, 傅硕, 卢领, 孙楠楠, 程守全, 谢冰, 张诗文, 王诚. 靶向药物联合缺损修复在成人先天性心脏病相关重度肺动脉高压的应用[J/OL]. 中华心脏与心律电子杂志, 2024, 12(02): 86-93.
[15] 王永彬, 贾彦迅, 尹轶广. 神经导航结合3D重建技术引导神经内镜血肿清除术对高血压脑出血患者的影响[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(02): 153-156.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?