切换至 "中华医学电子期刊资源库"

中华诊断学电子杂志 ›› 2021, Vol. 09 ›› Issue (01) : 62 -66. doi: 10.3877/cma.j.issn.2095-655X.2021.01.014

所属专题: 文献

综述

规律成簇间隔短回文重复序列及其相关蛋白基因编辑技术在感染性疾病诊断中的应用及其进展
于佳佳1, 张旭霞1, 李传友1, 刘毅1, 唐神结2,()   
  1. 1. 101149 首都医科大学附属北京胸科医院 北京市结核病胸部肿瘤研究所 耐药结核病研究北京市重点实验室细菌免疫室
    2. 101149 首都医科大学附属北京胸科医院 北京市结核病胸部肿瘤研究所 耐药结核病研究北京市重点实验室细菌免疫室 结核病多学科诊疗中心
  • 收稿日期:2020-10-14 出版日期:2021-02-10
  • 通信作者: 唐神结
  • 基金资助:
    国家科技重大专项(2015ZX10003001,2018ZX10301407-006); 首都卫生发展科研专项(首发2018-1-1041); 北京市临床重点专科项目(2020年); 通州两高人才工程运河计划(YH201804)

The application and progress of clustered regularly interspaced short palindromic repeats and associated proteins gene editing technology in the diagnosis of infectious diseases

Jiajia Yu1, Xuxia Zhang1, Chuanyou Li1, Yi Liu1, Shenjie Tang2,()   

  1. 1. Department of Bacteriology and Immunology, Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital Affiliated to Capital Medical University, Beijing 101149, China
    2. Multidisciplinary Diagnosis and Treatment Center of Tuberculosis, Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital Affiliated to Capital Medical University, Beijing 101149, China
  • Received:2020-10-14 Published:2021-02-10
  • Corresponding author: Shenjie Tang
引用本文:

于佳佳, 张旭霞, 李传友, 刘毅, 唐神结. 规律成簇间隔短回文重复序列及其相关蛋白基因编辑技术在感染性疾病诊断中的应用及其进展[J]. 中华诊断学电子杂志, 2021, 09(01): 62-66.

Jiajia Yu, Xuxia Zhang, Chuanyou Li, Yi Liu, Shenjie Tang. The application and progress of clustered regularly interspaced short palindromic repeats and associated proteins gene editing technology in the diagnosis of infectious diseases[J]. Chinese Journal of Diagnostics(Electronic Edition), 2021, 09(01): 62-66.

规律成簇间隔短回文重复序列(CRISPR)与相关蛋白Cas(CRISPR-Cas)系统是近来的研究热点,除在基因编辑方面有重要作用外,其应用于感染性疾病诊断方面也有很好的发展前景。传统感染性疾病检测及分子检测诊断技术在操作、检测周期及敏感度、特异度等方面存在不足。随着对CRISPR-Cas系统的深入研究,针对其特异核酸的识别和遗传修饰功能,可开展对感染性病原体检测技术的应用,目前发现可应用于检测的主要有Cas9、Cas12a和Cas13核酸酶。利用该检测技术的高效性、特异性和可编程性,可开展对寨卡病毒、登革热病毒、疟疾菌株、结核分枝杆菌、人乳头瘤病毒、埃博拉病毒、乙型肝炎病毒及严重急性呼吸综合征冠状病毒2等一系列感染性疾病病原体的检测。CRISPR-Cas基因编辑技术可能成为一种快速、灵敏、特异、低廉和可靠的诊断技术,为感染性疾病的诊断提供重要的理论依据。笔者主要对Cas9、Cas12a、Cas13等在感染性疾病诊断中的应用及其进展进行综述。

The clustered regularly interspaced short palindromic repeats (CRISPR) and associated proteins (CRISPR-Cas) systems are the hot research topics recently. In addition to their important roles in gene editing, CRISPR-Cas has a good prospect in the diagnosis of infectious diseases. Traditional diagnostic techniques for infectious diseases and molecular detection are inadequate in terms of operation, detection cycle, sensitivity and specificity. With the in-depth study of the CRISPR-Cas systems, the application of detection technology for infectious pathogens can be carried out in view of its specific nucleic acid recognition and genetic modification functions. At present, Cas9, Cas12a and Cas13 nucleases have been found to be the main ones that can be used for detection. The technology with high efficiency, specificity and programmability can be used for the detection of Zika virus, dengue, malaria, mycobacterium tuberculosis, human papilloma virus, Ebola, hepatitis B virus and severe acute respiratory syndrome corona virus 2, and a series of infectious diseases pathogens, which could become a rapid, sensitive, specific, cheap and reliable diagnosis technology, and provide important theoretical basis for the diagnosis of infectious diseases. This paper mainly reviews the application and progress of Cas9, Cas12a and Cas13 in the diagnosis of infectious diseases.

[1]
Taylor SC, Laperriere G, Germain H.Droplet Digital PCR versus qPCR for gene expression analysis with low abundant targets:from variable nonsense to publication quality data [J].Sci Rep,2017,7(1):2409.
[2]
Lau BT, Wood-Bouwens C, Ji HP.Robust multiplexed clustering and denoising of digital PCR assays by data gridding[J].Anal Chem,2017,89(22):11913-11917.
[3]
Pickar-Oliver A, Gersbach CA.The next generation of CRISPR-Cas technologies and applications[J].Nat Rev Mol Cell Biol,2019,20(8):490-507.
[4]
Grissa I, Vergnaud G, Pourcel C,et al.The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats [J].BMC Bioinformatics,2007(8):172.
[5]
Ishino Y, Shinagawa H, Makino K,et al.Nucleotide sequence of the iap gene,responsible for alkaline phosphatase isozyme conversion in Escherichia coli,and identification of the gene product[J].J Bacteriol,1987,169(12):5429-5433.
[6]
Makarova KS, Wolf YI, Alkhnbashi OS,et al.An updated evolutionary classification of CRISPR-Cas systems [J].Nat Rev Microbiol,2015,13(11):722-736.
[7]
Makarova KS, Wolf YI, Koonin EV.The basic building blocks and evolution of CRISPR-Cas systems [J].Biochem Soc Trans,2013,41(6):1392-1400.
[8]
Rouillon C, Zhou M, Zhang J, et al. Structure of the CRISPR interference complex CSM reveals key similarities with Cascade [J].Mol Cell,2013,52(1):124-134.
[9]
Shmakov S, Abudayyeh OO, Makarova KS,et al.Discovery and functional characterization of diverse class 2 CRISPR-Cas systems [J].Mol Cell,2015,60(3):385-397.
[10]
Hu JH, Davis KM, Liu DR.Chemical biology approaches to genome editing:understanding,controlling,and delivering programmable nucleases [J].Cell Chem Biol,2016,23(1):57-73.
[11]
Zetsche B, Gootenberg JS, Abudayyeh OO,et al.Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system [J].Cell,2015,163(3):759-771.
[12]
Gao P, Yang H, Rajashankar KR,et al.Type V CRISPR-Cas Cpf1 endonuclease employs a unique mechanism for crRNA-mediated target DNA recognition [J].Cell Res,2016,26(8):901-913.
[13]
Li SY, Cheng QX, Liu JK,et al.CRISPR-Cas12a has both cis- and trans-cleavage activities on single-stranded DNA [J].Cell Res,2018,28(4):491-493.
[14]
Abudayyeh OO, Gootenberg JS, Konermann S, et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector [J].Science,2016,353(6299):5573.
[15]
Jinek M, Chylinski K, Fonfara I,et al.A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity [J].Science,2012,337(6096):816-821.
[16]
Strutt SC, Torrez RM, Kaya E, et al. RNA-dependent RNA targeting by CRISPR-Cas9 [J].Elife,2018(7):e32724.
[17]
Pardee K, Green AA, Takahashi MK, et al. Rapid, low-cost detection of Zika virus using programmable biomolecular components[J].Cell,2016,165(5):1255-1266.
[18]
Muller V, Rajer F, Frykholm K, et al. Direct identification of antibiotic resistance genes on single plasmid molecules using CRISPR/Cas9 in combination with optical DNA mapping [J].Sci Rep,2016 (6):37938.
[19]
Quan J, Langelier C, Kuchta A,et al.FLASH:a next-generation CRISPR diagnostic for multiplexed detection of antimicrobial resistance sequences[J].Nucleic Acids Res,2019,47(14):e83.
[20]
Chen JS, Ma E, Harrington LB, et al. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity [J].Science,2018,360(6387):436-439.
[21]
Li SY, Cheng QX, Wang JM,et al.CRISPR-Cas12a-assisted nucleic acid detection [J].Cell Discov,2018 (4):20.
[22]
He Q, Yu D, Bao M,et al.High-throughput and all-solution phase African Swine Fever Virus (ASFV) detection using CRISPR-Cas12a and fluorescence based point-of-care system [J].Biosens Bioelectron,2020(154):112068.
[23]
Tao D, Liu J, Nie X, et al. Application of CRISPR-Cas12a enhanced fluorescence assay coupled with nucleic acid amplification for the sensitive detection of African Swine Fever Virus[J].ACS Synth Biol,2020,9(9):2339-2350.
[24]
Bai J, Lin H, Li H,et al.Cas12a-based on-site and rapid nucleic acid detection of African Swine Fever[J].Front Microbiol,2019(10):2830.
[25]
杨策.新型冠状病毒肺炎诊治——殊死搏斗中的困境与挑战[J/CD].中华诊断学电子杂志,2020,8(1):1-8.
[26]
Broughton JP, Deng X, Yu G, et al. CRISPR-Cas12-based detection of SARS-CoV-2 [J].Nat Biotechnol,2020,38(7):870-874.
[27]
Ding X, Yin K, Li Z, et al.All-In-One Dual CRISPR-Cas12a (AIOD-CRISPR) assay:a case for rapid,ultrasensitive and visual detection of novel Coronavirus SARS-CoV-2 and HIV virus[J]. Nat Commun,2020,11(1):4711.
[28]
Ali Z, Aman R, Mahas A,et al.iSCAN:an RT-LAMP-coupled CRISPR-Cas12 module for rapid,sensitive detection of SARS-CoV-2 [J].Virus Res,2020 (288):198129.
[29]
Ai JW, Zhou X, Xu T, et al. CRISPR-based rapid and ultra-sensitive diagnostic test for Mycobacterium tuberculosis [J].Emerg Microbes Infect,2019,8(1):1361-1369.
[30]
East-Seletsky A, O'Connell MR, Knight SC,et al.Two distinct RNase activitiesof CRISPR-C2c2 enable guide-RNA processing and RNA detection[J].Nature,2016,538(7624):270-273.
[31]
Gootenberg JS, Abudayyeh OO, Lee JW, et al. Nucleic acid detection with CRISPR-Cas13a/C2c2[J].Science,2017,356(6336):438-442.
[32]
Myhrvold C, Freije CA, Gootenberg JS,et al.Field-deployable viral diagnostics using CRISPR-Cas13 [J].Science,2018,360(6387):444-448.
[33]
Wu Y, Liu SX, Wang F, et al. Room temperature detection of plasma Epstein-Barr virus DNA with CRISPR-Cas13 [J].Clin Chem,2019,65(4):591-592.
[34]
Qin P, Park M, Alfson KJ,et al.Rapid and fully microfluidic Ebola virus detection with CRISPR-Cas13a [J].ACS Sens,2019,4(4):1048-1054.
[35]
Barnes KG, Lachenauer AE, Nitido A, et al.Deployable CRISPR-Cas13a diagnostic tools to detect and report Ebola and Lassa virus cases in real-time[J].Nat Commun,2020,11(1):4131.
[36]
Wang S, Li H, Kou Z,et al.Highly sensitive and specific detection of hepatitis B virus DNA and drug resistance mutations utilizing the PCR-based CRISPR-Cas13a system[J/OL].Clin Microbiol Infect,2020.[2020-10-14].published online ahead of print April 29,2020].

URL    
[37]
Liu Y, Xu H, Liu C, et al.CRISPR-Cas13a nanomachine based simple technology for avian influenza A (H7N9) virus on-site detection[J].J Biomed Nanotechnol,2019,15(4):790-798.
[38]
Arizti-Sanz J, Freije CA, Stanton AC, et al. Integrated sample inactivation,amplification,and Cas13-based detection of SARS-CoV-2 [J/OL].bioRxiv,2020.[2020-10-14].published online ahead of print May 28,2020].

URL    
[39]
Patchsung M, Jantarug K, Pattama A,et al.Clinical validation of a Cas13-based assay for the detection of SARS-CoV-2 RNA[J/OL].Nat Biomed Eng,2020.[2020-10-14].published online ahead of print August 26,2020].

URL    
[40]
Ackerman CM, Myhrvold C, Thakku SG, et al.Massively multiplexed nucleic acid detection with Cas13 [J].Nature,2020,582(7811):277-282.
[41]
Gootenberg JS, Abudayyeh OO, Kellner MJ,et al.Multiplexed and portable nucleic acid detection platform with Cas13,Cas12a,and Csm6 [J].Science,2018,360(6387):439-444.
[1] 刘丽, 贾小慧, 刘艳, 沈晓佳, 周谦, 张海洋, 向丽佳, 温晓滨, 周元琳, 许婉婷, 杨磊, 李磊, 王林, 唐义蓉. 2017—2022年成都市儿童流行性感冒流行特征及儿童早期预警评分对病情严重程度的预测[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(02): 235-241.
[2] 夏金蓉, 王慧, 刘玉珊, 谢江. COVID-19疫情暴发前、后呼吸道感染住院患儿呼吸道病原体的变化[J]. 中华妇幼临床医学杂志(电子版), 2022, 18(06): 712-721.
[3] 呼吸道传染病标本采集及检测专家委员会. 呼吸道传染病标本采集及检测专家共识[J]. 中华实验和临床感染病杂志(电子版), 2022, 16(04): 217-228.
[4] 任明仕, 王明岩, 董士勇, 彭江, 申华, 刘冰, 崔梦一, 成楠, 刘博罕, 邱实, 张涛, 任延玲, 魏红江, 宋翔宇, 杨博尧, 王凯, 熊兴, 王嵘. 人源化基因修饰猪-猴异种心脏移植的实验研究[J]. 中华移植杂志(电子版), 2022, 16(06): 329-338.
[5] 任明仕, 王嵘, 王明岩, 张丽月, 成楠, 吴远斌. 异种心脏移植基因修饰策略及围手术期管理研究进展[J]. 中华移植杂志(电子版), 2022, 16(03): 183-189.
[6] 王瑾瑜, 张善东, 白晶. 北京部分地区2019-2021年呼吸道传染病发病情况分析[J]. 中华肺部疾病杂志(电子版), 2022, 15(05): 670-672.
[7] 乔艳艳, 韩璐瑶, 王在强, 冯艳珍, 李婵, 李玉娟, 金发光, 傅恩清. 环介导恒温扩增芯片法在下呼吸道感染病原体检测中的临床应用[J]. 中华肺部疾病杂志(电子版), 2022, 15(04): 477-480.
[8] 宋艳, 魏碧霞, 陶勇, 阿依古孜·克里木, 丁琳. 眼内液检测在明确葡萄膜炎病因中应用的临床研究[J]. 中华眼科医学杂志(电子版), 2023, 13(02): 82-87.
[9] 杨翔, 郭兰骐, 谢剑锋, 邱海波. 宏基因组二代测序在脓毒症病原体诊断中的应用进展[J]. 中华重症医学电子杂志, 2023, 09(03): 292-297.
[10] 敬勇, 李鑫, 付晶, 常莉, 肖宁, 马黎, 乐磊, 黄雷, 王学杰, 尹立雪, 陈康, 吕传柱, 刘于嵩. 大规模突发性公共卫生事件的紧急医学救援实践[J]. 中华临床医师杂志(电子版), 2022, 16(09): 821-827.
[11] 王意喆, 杨晓琨, 高颖, 张桂英, 张志国. 高校直属附院中医类别学生疫情防控意识形态现状与思政教育提升措施[J]. 中华针灸电子杂志, 2023, 12(01): 42-44.
[12] 刘敏, 彭才静, 王金能. 重庆市新型冠状病毒肺炎疫情前后儿童支气管肺炎痰培养结果分析[J]. 中华诊断学电子杂志, 2023, 11(02): 97-103.
[13] 温敏, 易云兰, 吕超群, 伍友春, 段钢, 石义容, 操静. 大规模新发突发传染病疫情时传染病医院应急管理模式探索实践[J]. 中华卫生应急电子杂志, 2023, 09(01): 20-24.
[14] 吴洪涛, 梁娟娟, 王春平. 重大传染病疫情社区韧性内涵与外延[J]. 中华卫生应急电子杂志, 2023, 09(01): 13-19.
[15] 李群. 加强卫生应急体系建设,做好大流行疾病准备和应对[J]. 中华卫生应急电子杂志, 2023, 09(01): 64-64.
阅读次数
全文


摘要