切换至 "中华医学电子期刊资源库"

中华诊断学电子杂志 ›› 2021, Vol. 09 ›› Issue (03) : 145 -148. doi: 10.3877/cma.j.issn.2095-655X.2021.03.001

精神疾病诊治

基于多模态脑影像和机器学习算法的个体行为预测研究现状及未来趋势
姜荣涛1, 戚世乐2, 吴静3, 李想1, 赵敏1, 隋婧4, 禚传君5,()   
  1. 1. 100190 北京,中国科学院自动化研究所模式识别国家重点实验室脑网络组研究中心;100049 北京,中国科学大学人工智能学院
    2. 211106 南京航空航天大学计算机科学与技术学院
    3. 100069 北京,首都医科大学附属北京佑安医院肿瘤内科
    4. 100088 北京师范大学认知神经科学与学习国家重点实验室
    5. 300140 天津市第四中心医院实时脑环路重点实验室
  • 收稿日期:2021-02-26 出版日期:2021-08-26
  • 通信作者: 禚传君
  • 基金资助:
    国家自然科学基金(61773380,82022035); 北京市脑科学计划(Z181100001518005)

The research status and future trends of individual behavior prediction based on multimodal neuroimaging and machine learning algorithms

Rongtao Jiang1, Shile Qi2, Jing Wu3, Xiang Li1, Min Zhao1, Jing Sui4, Chuanjun Zhuo5,()   

  1. 1. Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
    2. College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
    3. Department of Medical Oncology, Beijing You-An Hospital, Capital Medical University, Beijing 100069, China
    4. State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100088, China
    5. Key Laboratory of Real-time Brain Circuits, Tianjin Fourth Center Hospital, Tianjin 300140, China
  • Received:2021-02-26 Published:2021-08-26
  • Corresponding author: Chuanjun Zhuo
引用本文:

姜荣涛, 戚世乐, 吴静, 李想, 赵敏, 隋婧, 禚传君. 基于多模态脑影像和机器学习算法的个体行为预测研究现状及未来趋势[J/OL]. 中华诊断学电子杂志, 2021, 09(03): 145-148.

Rongtao Jiang, Shile Qi, Jing Wu, Xiang Li, Min Zhao, Jing Sui, Chuanjun Zhuo. The research status and future trends of individual behavior prediction based on multimodal neuroimaging and machine learning algorithms[J/OL]. Chinese Journal of Diagnostics(Electronic Edition), 2021, 09(03): 145-148.

神经科学的研究已由传统的单变量分析进入到以多元个体预测方法为主要手段的转化神经科学阶段,该类研究致力于利用先进的模式回归算法,开发应用能够在单个样本水平对连续变量进行精准预测的机器学习模型,寻找稳健可靠的客观影像学标记物。目前,基于机器学习算法的预测模型在包括认知能力、精神疾病严重程度、性格特质、情绪感受等在内的多种行为变量的预测中展现了巨大潜力,是探索人类个体认知能力、个性发展的一项有力工具。目前,国际上主流用于个体化预测的回归分析方法主要包括多元线性回归、最小绝对收缩和选择算子回归、弹性网、岭回归、支持向量回归、关联向量回归以及偏最小二乘回归。在未来研究中,需要结合多中心大样本影像数据,充分利用多模态影像特征在挖掘互补信息上的优势,开发能够对未来行为进行预测的纵向分析模型,并通过独立数据集检验模型的泛化能力。个体化预测为深入理解认知功能及精神疾病的脑机制提供了新的参考。

The neuroimaging researches are moving towards a translational neuroscience era that is characterized by the use of multivariate predictive modeling, which is distinct from traditional univariate brain mapping studies. These studies maintain a focus on decoding individual differences in a continuously behavioural phenotype from neuroimaging data using regression-based methods, with an ultimate goal of identifying reliable and objective neuromarkers that can aid in clinical practice at the individual level. The machine learning algorithms-based predictive modeling has been successfully applied in the prediction of multiple important behavioural aspects including cognitive abilities, symptom severity for psychiatric patients, personality, and emotion feeling. The methods used for predictive modeling primarily involve multiple linear regression, least absolute shrinkage and selection operator regression, elastic net, ridge regression, support vector regression, relevance vector regression and partial least square regression. Promisingly, studies that are performed large neuroimaging dataset with rigorously external validation focusing on predicting future behavioural outcomes are encouraged. Moreover, multimodal data can be leveraged to extract the complementary information for investigating individual differences. Overall, predictive modelling opens up novel opportunities to better understand the neurobiological substrates of cognitive abilities and brain disorders.

[1]
Woo CW, Chang LJ, Lindquist MA,et al.Building better biomarkers:brain models in translational neuroimaging[J].Nat Neurosci,2017,20(3): 365-377.
[2]
Sui J, Jiang RT, Bustillo J,et al.Neuroimaging-based individualized prediction of cognition and behavior for mental disorders and health:methods and promises[J].Biol Psychiatry,2020,88(11): 818-828.
[3]
Dubois J, Adolphs R.Building a science of individual differences from fMRI[J].Trends Cogn Sci,2016,20(6): 425-443.
[4]
Rosenberg MD, Casey BJ, Holmes AJ. Prediction complements explanation in understanding the developing brain[J].Nat Commun,2018,9(1): 589.
[5]
张津津,曲鸿儒,高艳杰,等.言语性幻听症状的多模态脑影像学研究现状及未来趋势[J/CD].中华诊断学电子杂志,2016,4(2): 100-103.
[6]
Poldrack RA, Huckins G, Varoquaux G. Establishment of best practices for evidence for prediction:a review[J].JAMA Psychiatry,2020,77(5): 534-540.
[7]
Abi-Dargham A, Horga G.The search for imaging biomarkers in psychiatric disorders[J].Nat Med,2016,22(11): 1248-1255.
[8]
Eickhoff SB, Langner R.Neuroimaging-based prediction of mental traits:road to utopia or orwell?[J].PLoS Biol,2019,17(11): e3000497.
[9]
Jiang RT, Calhoun VD, Fan LZ, et al. Gender differences in connectome-based predictions of individualized intelligence quotient and sub-domain scores[J].Cereb Cortex,2020,30(3): 888-900.
[10]
Wang DH, Li MY, Wang ML,et al.Individual-specific functional connectivity markers track dimensional and categorical features of psychotic illness[J].Mol Psychiatry,2020,25(9): 2119-2129.
[11]
Hsu WT, Rosenberg MD, Scheinost D,et al.Resting-state functional connectivity predicts neuroticism and extraversion in novel individuals[J].Soc Cogn Affect Neurosci,2018,13(2): 224-232.
[12]
Finn ES, Shen XL, Scheinost D, et al. Functional connectome fingerprinting:identifying individuals using patterns of brain connectivity[J].Nat Neurosci,2015,18(11): 1664-1671.
[13]
Jiang RT, Zuo NM, Ford JM,et al.Task-induced brain connectivity promotes the detection of individual differences in brain-behavior relationships[J].Neuroimage,2020(207): 116370.
[14]
Poldrack RA, Gorgolewski KJ.Making big data open:data sharing in neuroimaging[J].Nat Neurosci,2014,17(11): 1510-1517.
[15]
Scheinost D, Noble S, Horien C,et al.Ten simple rules for predictive modeling of individual differences in neuroimaging[J].Neuroimage,2019(193): 35-45.
[16]
Jiang RT, Calhoun VD, Cui Y, et al. Multimodal data revealed different neurobiological correlates of intelligence between males and females[J].Brain Imaging Behav,2020,14(5): 1979-1993.
[17]
Sui J, Qi SL, Van Erp TGM,et al.Multimodal neuromarkers in schizophrenia via cognition-guided MRI fusion[J].Nat Commun,2018,9(1): 3028.
[18]
Horien C, Shen XL, Scheinost D,et al.The individual functional connectome is unique and stable over months to years[J].Neuroimage,2019(189): 676-687.
[19]
Greene AS, Gao SY, Scheinost D,et al.Task-induced brain state manipulation improves prediction of individual traits[J].Nat Commun,2018,9(1): 2807.
[20]
Rosenberg MD, Finn ES, Scheinost D, et al. A neuromarker of sustained attention from whole-brain functional connectivity[J].Nat Neurosci,2016,19(1): 165-171.
[21]
Rosenberg MD, Scheinost D, Greene AS,et al.Functional connectivity predicts changes in attention observed across minutes,days,and months[J].Proc Natl Acad Sci U S A,2020,117(7): 3797-3807.
[1] 项文静, 徐燕, 茹彤, 郑明明, 顾燕, 戴晨燕, 朱湘玉, 严陈晨. 神经学超声检查在产前诊断胼胝体异常中的应用价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(05): 470-476.
[2] 谢峰, 伍玉晗, 赵胜, 杨小红, 王玉波, 石珍, 范建华, 章敏. 产前超声和MRI诊断胎儿硬脑膜窦畸形的联合应用[J/OL]. 中华医学超声杂志(电子版), 2024, 21(03): 275-280.
[3] 刘晨鹭, 刘洁, 张帆, 严彩英, 陈倩, 陈双庆. 增强MRI 影像组学特征生境分析在预测乳腺癌HER-2 表达状态中的应用[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 339-345.
[4] 庄若语, 杭明辉, 李文华, 张霆, 侯炜. 膝骨关节炎半定量磁共振评分研究进展[J/OL]. 中华关节外科杂志(电子版), 2024, 18(04): 545-552.
[5] 吴少敏, 张世豪, 刘炳光, 李婵, 尹嘉敏, 郑昌业, 黄素然. 胎儿巨大蛛网膜囊肿并文献复习[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(04): 390-397.
[6] 陈海香, 王元银, 蒋盼. 冠突过长患者的临床表现及磁共振影像学分析[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(03): 169-174.
[7] 谢丽春, 欧庆芬, 张秋萍, 叶升. 简化和标准肝脏MRI方案在结直肠癌肝转移患者随访中的临床应用[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(04): 434-437.
[8] 刘明辉, 葛方明. MRI 对腹股沟疝修补术后患者早期并发症的评估价值研究[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(05): 579-583.
[9] 臧书芹, 陈巧玲, 江思源, 朱晓明, 沈浮, 王颢, 张卫, 邵成伟. 基于直肠高分辨MRI的直肠侧系膜分析及其临床价值的研究[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(04): 312-320.
[10] 吴浩凡, 刘元豪, 张锋敏, 张现中, 朱金浩, 黄嘉莹, 刘忠臣, 丁良福, 庄成乐. 基于术前MRI的盆底解剖参数对超低位直肠癌精准功能保肛手术时间的影响[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(03): 209-216.
[11] 潘清, 葛慧青. 基于机械通气波形大数据的人机不同步自动监测方法[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 399-403.
[12] 张立俊, 孙存杰, 胡春峰, 孟冲, 张辉. MSCT、DCE-MRI 评估术前胃癌TNM 分期的准确性研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 519-523.
[13] 孙铭远, 褚恒, 徐海滨, 张哲. 人工智能应用于多发性肺结节诊断的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 785-790.
[14] 欧阳川, 朱巧珍, 欧阳林. 腰椎间盘退变的生物代谢特征及评价技术研究进展[J/OL]. 中华诊断学电子杂志, 2024, 12(03): 206-211.
[15] 金安松, 邹玉松, 刘玖涛, 薛凤麟, 庞爱兰. 孤立性颅内浆细胞瘤一例及相关文献复习[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(05): 495-500.
阅读次数
全文


摘要