切换至 "中华医学电子期刊资源库"

中华诊断学电子杂志 ›› 2021, Vol. 09 ›› Issue (03) : 145 -148. doi: 10.3877/cma.j.issn.2095-655X.2021.03.001

精神疾病诊治

基于多模态脑影像和机器学习算法的个体行为预测研究现状及未来趋势
姜荣涛1, 戚世乐2, 吴静3, 李想1, 赵敏1, 隋婧4, 禚传君5,()   
  1. 1. 100190 北京,中国科学院自动化研究所模式识别国家重点实验室脑网络组研究中心;100049 北京,中国科学大学人工智能学院
    2. 211106 南京航空航天大学计算机科学与技术学院
    3. 100069 北京,首都医科大学附属北京佑安医院肿瘤内科
    4. 100088 北京师范大学认知神经科学与学习国家重点实验室
    5. 300140 天津市第四中心医院实时脑环路重点实验室
  • 收稿日期:2021-02-26 出版日期:2021-08-26
  • 通信作者: 禚传君
  • 基金资助:
    国家自然科学基金(61773380,82022035); 北京市脑科学计划(Z181100001518005)

The research status and future trends of individual behavior prediction based on multimodal neuroimaging and machine learning algorithms

Rongtao Jiang1, Shile Qi2, Jing Wu3, Xiang Li1, Min Zhao1, Jing Sui4, Chuanjun Zhuo5,()   

  1. 1. Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
    2. College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
    3. Department of Medical Oncology, Beijing You-An Hospital, Capital Medical University, Beijing 100069, China
    4. State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100088, China
    5. Key Laboratory of Real-time Brain Circuits, Tianjin Fourth Center Hospital, Tianjin 300140, China
  • Received:2021-02-26 Published:2021-08-26
  • Corresponding author: Chuanjun Zhuo
引用本文:

姜荣涛, 戚世乐, 吴静, 李想, 赵敏, 隋婧, 禚传君. 基于多模态脑影像和机器学习算法的个体行为预测研究现状及未来趋势[J]. 中华诊断学电子杂志, 2021, 09(03): 145-148.

Rongtao Jiang, Shile Qi, Jing Wu, Xiang Li, Min Zhao, Jing Sui, Chuanjun Zhuo. The research status and future trends of individual behavior prediction based on multimodal neuroimaging and machine learning algorithms[J]. Chinese Journal of Diagnostics(Electronic Edition), 2021, 09(03): 145-148.

神经科学的研究已由传统的单变量分析进入到以多元个体预测方法为主要手段的转化神经科学阶段,该类研究致力于利用先进的模式回归算法,开发应用能够在单个样本水平对连续变量进行精准预测的机器学习模型,寻找稳健可靠的客观影像学标记物。目前,基于机器学习算法的预测模型在包括认知能力、精神疾病严重程度、性格特质、情绪感受等在内的多种行为变量的预测中展现了巨大潜力,是探索人类个体认知能力、个性发展的一项有力工具。目前,国际上主流用于个体化预测的回归分析方法主要包括多元线性回归、最小绝对收缩和选择算子回归、弹性网、岭回归、支持向量回归、关联向量回归以及偏最小二乘回归。在未来研究中,需要结合多中心大样本影像数据,充分利用多模态影像特征在挖掘互补信息上的优势,开发能够对未来行为进行预测的纵向分析模型,并通过独立数据集检验模型的泛化能力。个体化预测为深入理解认知功能及精神疾病的脑机制提供了新的参考。

The neuroimaging researches are moving towards a translational neuroscience era that is characterized by the use of multivariate predictive modeling, which is distinct from traditional univariate brain mapping studies. These studies maintain a focus on decoding individual differences in a continuously behavioural phenotype from neuroimaging data using regression-based methods, with an ultimate goal of identifying reliable and objective neuromarkers that can aid in clinical practice at the individual level. The machine learning algorithms-based predictive modeling has been successfully applied in the prediction of multiple important behavioural aspects including cognitive abilities, symptom severity for psychiatric patients, personality, and emotion feeling. The methods used for predictive modeling primarily involve multiple linear regression, least absolute shrinkage and selection operator regression, elastic net, ridge regression, support vector regression, relevance vector regression and partial least square regression. Promisingly, studies that are performed large neuroimaging dataset with rigorously external validation focusing on predicting future behavioural outcomes are encouraged. Moreover, multimodal data can be leveraged to extract the complementary information for investigating individual differences. Overall, predictive modelling opens up novel opportunities to better understand the neurobiological substrates of cognitive abilities and brain disorders.

[1]
Woo CW, Chang LJ, Lindquist MA,et al.Building better biomarkers:brain models in translational neuroimaging[J].Nat Neurosci,2017,20(3): 365-377.
[2]
Sui J, Jiang RT, Bustillo J,et al.Neuroimaging-based individualized prediction of cognition and behavior for mental disorders and health:methods and promises[J].Biol Psychiatry,2020,88(11): 818-828.
[3]
Dubois J, Adolphs R.Building a science of individual differences from fMRI[J].Trends Cogn Sci,2016,20(6): 425-443.
[4]
Rosenberg MD, Casey BJ, Holmes AJ. Prediction complements explanation in understanding the developing brain[J].Nat Commun,2018,9(1): 589.
[5]
张津津,曲鸿儒,高艳杰,等.言语性幻听症状的多模态脑影像学研究现状及未来趋势[J/CD].中华诊断学电子杂志,2016,4(2): 100-103.
[6]
Poldrack RA, Huckins G, Varoquaux G. Establishment of best practices for evidence for prediction:a review[J].JAMA Psychiatry,2020,77(5): 534-540.
[7]
Abi-Dargham A, Horga G.The search for imaging biomarkers in psychiatric disorders[J].Nat Med,2016,22(11): 1248-1255.
[8]
Eickhoff SB, Langner R.Neuroimaging-based prediction of mental traits:road to utopia or orwell?[J].PLoS Biol,2019,17(11): e3000497.
[9]
Jiang RT, Calhoun VD, Fan LZ, et al. Gender differences in connectome-based predictions of individualized intelligence quotient and sub-domain scores[J].Cereb Cortex,2020,30(3): 888-900.
[10]
Wang DH, Li MY, Wang ML,et al.Individual-specific functional connectivity markers track dimensional and categorical features of psychotic illness[J].Mol Psychiatry,2020,25(9): 2119-2129.
[11]
Hsu WT, Rosenberg MD, Scheinost D,et al.Resting-state functional connectivity predicts neuroticism and extraversion in novel individuals[J].Soc Cogn Affect Neurosci,2018,13(2): 224-232.
[12]
Finn ES, Shen XL, Scheinost D, et al. Functional connectome fingerprinting:identifying individuals using patterns of brain connectivity[J].Nat Neurosci,2015,18(11): 1664-1671.
[13]
Jiang RT, Zuo NM, Ford JM,et al.Task-induced brain connectivity promotes the detection of individual differences in brain-behavior relationships[J].Neuroimage,2020(207): 116370.
[14]
Poldrack RA, Gorgolewski KJ.Making big data open:data sharing in neuroimaging[J].Nat Neurosci,2014,17(11): 1510-1517.
[15]
Scheinost D, Noble S, Horien C,et al.Ten simple rules for predictive modeling of individual differences in neuroimaging[J].Neuroimage,2019(193): 35-45.
[16]
Jiang RT, Calhoun VD, Cui Y, et al. Multimodal data revealed different neurobiological correlates of intelligence between males and females[J].Brain Imaging Behav,2020,14(5): 1979-1993.
[17]
Sui J, Qi SL, Van Erp TGM,et al.Multimodal neuromarkers in schizophrenia via cognition-guided MRI fusion[J].Nat Commun,2018,9(1): 3028.
[18]
Horien C, Shen XL, Scheinost D,et al.The individual functional connectome is unique and stable over months to years[J].Neuroimage,2019(189): 676-687.
[19]
Greene AS, Gao SY, Scheinost D,et al.Task-induced brain state manipulation improves prediction of individual traits[J].Nat Commun,2018,9(1): 2807.
[20]
Rosenberg MD, Finn ES, Scheinost D, et al. A neuromarker of sustained attention from whole-brain functional connectivity[J].Nat Neurosci,2016,19(1): 165-171.
[21]
Rosenberg MD, Scheinost D, Greene AS,et al.Functional connectivity predicts changes in attention observed across minutes,days,and months[J].Proc Natl Acad Sci U S A,2020,117(7): 3797-3807.
[1] 丁建民, 秦正义, 张翔, 周燕, 周洪雨, 王彦冬, 经翔. 超声造影与普美显磁共振成像对具有高危因素的≤3 cm肝结节进行LI-RADS分类诊断的前瞻性研究[J]. 中华医学超声杂志(电子版), 2023, 20(09): 930-938.
[2] 张莲莲, 惠品晶, 丁亚芳. 颈部血管超声在粥样硬化斑块易损性评估中的应用价值[J]. 中华医学超声杂志(电子版), 2023, 20(08): 816-821.
[3] 刘冰茹, 刘皓希, 陈莹, 赖世伟, 陈蓉. 疑似乳腺癌的韧带样纤维瘤病一例[J]. 中华乳腺病杂志(电子版), 2023, 17(05): 314-317.
[4] 叶艳娜, 叶瑞婷, 陈艳玲, 彭雯, 刘乐, 肖文秋, 黄辉, 李明深, 钟慕仪, 叶娴. 基于影像学表现和临床病理特征预测良性与交界性乳腺叶状肿瘤复发的列线图模型[J]. 中华乳腺病杂志(电子版), 2023, 17(04): 229-237.
[5] 董晓燕, 赵琪, 唐军, 张莉, 杨晓燕, 李姣. 奥密克戎变异株感染所致新型冠状病毒感染疾病新生儿的临床特征分析[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 595-603.
[6] 范帅华, 郭伟, 郭军. 基于机器学习的决策树算法在血流感染预后预测中应用现状及展望[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(05): 289-293.
[7] 韩宇, 张武, 李安琪, 陈文颖, 谢斯栋. MRI肝脏影像报告和数据系统对非肝硬化乙肝患者肝细胞癌的诊断价值[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 669-673.
[8] 雷漫诗, 邓锶锶, 汪昕蓉, 黄锦彬, 向青, 熊安妮, 孟占鳌. 人工智能辅助压缩感知技术在上腹部T2WI压脂序列中的应用[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 551-556.
[9] 葛云鹏, 崔红元, 宋京海. 人工智能在原发性肝癌诊断、治疗及预后中的应用[J]. 中华肝脏外科手术学电子杂志, 2023, 12(04): 367-371.
[10] 钟广俊, 刘春华, 朱万森, 徐晓雷, 王兆军. MRI联合不同扫描序列在胃癌术前分期诊断及化疗效果和预后的评估[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 378-382.
[11] 吴钰娴, 冯亚园, 霍雷, 贾宁阳, 张娟. 原发性肝脏淋巴瘤的影像学诊断价值研究[J]. 中华消化病与影像杂志(电子版), 2023, 13(05): 349-353.
[12] 冯海涛, 徐涛, 刘文阳, 孙晨, 曹尚超. 三维动脉自旋标记联合动态对比增强MRI对脑胶质瘤术后复发及放射性脑坏死诊断的研究[J]. 中华消化病与影像杂志(电子版), 2023, 13(04): 262-265.
[13] 郭震天, 张宗明, 赵月, 刘立民, 张翀, 刘卓, 齐晖, 田坤. 机器学习算法预测老年急性胆囊炎术后住院时间探索[J]. 中华临床医师杂志(电子版), 2023, 17(9): 955-961.
[14] 王俊杰, 尹晓亮, 刘二腾, 陆军, 祁鹏, 胡深, 杨希孟, 陈鲲鹏, 张东, 王大明. 机器学习对预测颈内动脉非急性闭塞患者血管内再通术成功的潜在价值[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 464-470.
[15] 赵暾, 徐霁华, 何有娣, 鲁明. 误诊为脑梗死且险些溶栓的急性自发微量脑出血一例[J]. 中华脑血管病杂志(电子版), 2023, 17(04): 369-372.
阅读次数
全文


摘要