切换至 "中华医学电子期刊资源库"

中华诊断学电子杂志 ›› 2021, Vol. 09 ›› Issue (04) : 285 -288. doi: 10.3877/cma.j.issn.2095-655X.2021.04.016

综述

微小RNA与糖尿病周围神经病变研究进展
苏畅1, 梁秋华2, 孙琳3,()   
  1. 1. 272013 济宁医学院临床医学院
    2. 272029 济宁医学院附属医院内分泌科
    3. 272002 济宁市第一人民医院内分泌科
  • 收稿日期:2021-01-25 出版日期:2021-11-26
  • 通信作者: 孙琳
  • 基金资助:
    山东省自然科学基金面上项目(ZR2019MH087)

The research progress of miRNA and diabetic peripheral neuropathy

Chang Su1, Qiuhua Liang2, Lin Sun3,()   

  1. 1. Clinical Medical College, Jining Medical University, Jining 272013, China
    2. Department of Endocrinology, The Affiliated Hospital of Jining Medical University, Jining 272029, China
    3. Department of Endocrinology, The First People′s Hospital of Jining, Jining 272002, China
  • Received:2021-01-25 Published:2021-11-26
  • Corresponding author: Lin Sun
引用本文:

苏畅, 梁秋华, 孙琳. 微小RNA与糖尿病周围神经病变研究进展[J/OL]. 中华诊断学电子杂志, 2021, 09(04): 285-288.

Chang Su, Qiuhua Liang, Lin Sun. The research progress of miRNA and diabetic peripheral neuropathy[J/OL]. Chinese Journal of Diagnostics(Electronic Edition), 2021, 09(04): 285-288.

糖尿病周围神经病变(DPN)是糖尿病常见的并发症之一,临床表现为四肢疼痛、麻木、感觉异常和溃疡,是非创伤性截肢的主要原因。微小RNA(miRNA)属于非编码RNA的一种,是一类进化上高度保守的RNA,通常长度为18~25个碱基。miRNA通过调节多个基因在多种疾病和细胞类型中的作用被陆续报道,如细胞生长、增殖、分化、凋亡、转录后基因调节等。有研究发现,miRNA与神经传导、损伤、凋亡等密切相关,因此其可作为DPN诊断、预后的生物标志物和潜在分子治疗的靶点。笔者主要综述miRNA在DPN中的作用,以及基于miRNA治疗方法的相关研究进展。

Diabetic peripheral neuropathy (DPN) is one of the common complications of diabetes, with clinical manifestations including limb pain, numbness, paresthesia and ulceration. DPN is the main cause of non-traumatic amputation. MicroRNA (miRNA) belongs to non-coding RNA (ncRNA) and is an evolutionarily highly conservative RNA, usually 18-25 bases in length. MiRNA has been reported one after another by regulating the roles of multiple genes in a variety of diseases and cell types, such as cell growth, proliferation, differentiation, apoptosis, posttranscriptional gene regulation, and others. Studies have found that miRNA is closely related to nerve conduction, injury, and apoptosis, so miRNA can be used as biomarkers for the diagnosis and prognosis of DPN and as targets for potential molecular therapy. This article mainly reviews the role of miRNA in DPN and the related research progress based on miRNA therapy.

[1]
付煊,高晖,阿米娜,等.2型糖尿病患者血糖水平及血糖变异性与糖化血红蛋白水平的相关性研究[J/CD].中华诊断学电子杂志20208(4):242-247.
[2]
Eberle C, Stichling S.Clinical improvements by telemedicine interventions managing type 1 and type 2 diabetes: systematic meta-review[J].J Med Internet Res202123(2):e23244.
[3]
Nguyen N, Takemoto JK.A case for alpha-lipoic acid as an alternative treatment for diabetic polyneuropathy[J].J Pharm Pharm Sci201821(1s):177s-191s.
[4]
Lee KA, Park TS, Jin HY.Non-glucose risk factors in the pathogenesis of diabetic peripheral neuropathy[J].Endocrine202070(3):465-478.
[5]
Zhang X, Gong X, Han S,et al.MiR-29b protects dorsal root ganglia neurons from diabetic rat[J].Cell BiochemBiophys201470(2):1105-1111.
[6]
Jia L, Wang L, Chopp M,et al.MicroRNA 146a locally mediates distal axonal growth of dorsal root ganglia neurons under high glucose and sildenafil conditions[J].Neuroscience2016(329):43-53.
[7]
Pop-Busui R, Boulton AJ, Feldman EL,et al.Diabetic neuropathy:a position statement by the American diabetes association[J].Diabetes Care201740(1):136-154.
[8]
Sala D, Zorzano A.Differential control of muscle mass in type 1 and type 2 diabetes mellitus[J].Cell Mol Life Sci201572(20):3803-3817.
[9]
Papanas N, Ziegler D.Risk factors and comorbidities in diabetic neuropathy: an update 2015[J].Rev Diabet Stud201512(1-2):48-62.
[10]
Obrosova IG, Van Huysen C, Fathallah L,et al.An aldose reductase inhibitor reverses early diabetes-induced changes in peripheral nerve function,metabolism,and antioxidative defense[J].FASEB J200216(1):123-125.
[11]
Vincent AM, Feldman EL. New insights into the mechanisms of diabetic neuropathy[J].Rev Endocr Metab Disord20045(3):227-236.
[12]
Vincent AM, Hayes JM, McLean LL,et al.Dyslipidemia-induced neuropathy in mice: the role of oxLDL/LOX-1[J].Diabetes200958(10):2376-2385.
[13]
Zhou H, Zhang W. Gene expression profiling reveals candidate biomarkers and probable molecular mechanism in diabetic peripheral neuropathy[J].Diabetes Metab Syndr Obes2019(12):1213-1223.
[14]
Bönhof GJ, Herder C, Strom A,et al.Emerging biomarkers,tools,and treatments for diabetic polyneuropathy[J].Endocr Rev201940(1):153-192.
[15]
Hoffmann M, Kujath P, Flemming A, et al. Survival of diabetes patients with major amputation is comparable to malignant disease[J].Diab Vasc Dis Res201512(4):265-271.
[16]
Singh N, Armstrong DG, Lipsky BA. Preventing foot ulcers in patients with diabetes[J].JAMA2005293(2):217-228.
[17]
Mitchelson KR, Qin WY.Roles of the canonical myomiRs miR-1,-133 and -206 in cell development and disease[J].World J Biol Chem20156(3):162-208.
[18]
Duong Van Huyen JP, Tible M, Gay A,et al.MicroRNAs as non-invasive biomarkers of heart transplant rejection[J].Eur Heart J201435(45):3194-3202.
[19]
Kozomara A, Griffiths-Jones S.MiRBase:annotating high confidence microRNAs using deep sequencing data[J].Nucleic Acids Res201442(Database issue):D68-D73.
[20]
Lewis BP, Burge CB, Bartel DP.Conserved seed pairing,often flanked by adenosines,indicates that thousands of human genes are microRNA targets[J].Cell2005120(1):15-20.
[21]
Osmai M, Osmai Y, Bang-Berthelsen CH, et al. MicroRNAs as regulators of beta-cell function and dysfunction[J].Diabetes Metab Res Rev201632(4):334-349.
[22]
Duksal T, Tiftikcioglu BI, Bilgin S,et al.Role of inflammation in sensory neuropathy in prediabetes or diabetes[J].Acta Neurol Scand2016133(5):384-390.
[23]
Bai X, Zhang J, Cao M,et al.MicroRNA-146a protects against LPS-induced organ damage by inhibiting Notch1 in macrophage[J].Int Immunopharmacol2018(63):220-226.
[24]
Thakkar S, Wang X, Khaidakov M, et al. Structure-based design targeted at LOX-1,a receptor for oxidized low-density lipoprotein[J].Sci Rep2015(5):16740.
[25]
Liu XS, Fan B, Szalad A,et al.MicroRNA-146a mimics reduce the peripheral neuropathy in type 2 diabetic mice[J].Diabetes201766(12):3111-3121.
[26]
Tardito S, Martinelli G, Soldano S,et al.Macrophage M1/M2 polarization and rheumatoid arthritis:a systematic review[J].Autoimmun Rev201918(11):102397.
[27]
Ren W, Xi G, Li X,et al.Long non-coding RNA HCG18 promotes M1 macrophage polarization through regulating the miR-146a/TRAF6 axis,facilitating the progression of diabetic peripheral neuropathy[J].Mol Cell Biochem2021476(1):471-482.
[28]
Meza-Sosa KF, Pedraza-Alva G, Pérez-Martínez L.MicroRNAs:key triggers of neuronal cell fate[J].Front Cell Neurosci2014(8):175.
[29]
Zhang Y, Song C, Liu J, et al. Inhibition of miR-25 aggravates diabetic peripheral neuropathy[J].Neuroreport201829(11):945-953.
[30]
Li H, Zhu X, Zhang J, et al. MicroRNA-25 inhibits high glucose-induced apoptosis in renal tubular epithelial cells via PTEN/AKT pathway[J].Biomed Pharmacother2017(96):471-479.
[31]
Wang C, Xu X, Chen J, et al. The construction and analysis of lncRNA-miRNA-mRNA competing endogenous RNA network of schwann cells in diabetic peripheral neuropathy[J].Front Bioeng Biotechnol2020(8):490.
[32]
Gregory PA, Bert AG, Paterson EL,et al.The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1[J].Nat Cell Biol200810(5):593-601.
[33]
Kurashige J, Kamohara H, Watanabe M, et al. MicroRNA-200b regulates cell proliferation,invasion,and migration by directly targeting ZEB2 in gastric carcinoma[J].Ann Surg Oncol201219 (Suppl 3):S656-S664.
[34]
Lewin GR, Lechner SG, Smith ES.Nerve growth factor and nociception:from experimental embryology to new analgesic therapy[J].Handb Exp Pharmacol2014(220):251-282.
[35]
Zhang Y, Chopp M, Liu XS,et al.MicroRNAs in the axon locally mediate the effects of chondroitin sulfate proteoglycans and cGMP on axonal growth[J].Dev Neurobiol201575(12):1402-1419.
[36]
Jia L, Wang L, Chopp M,et al.MiR-29c/PRKCI regulates axonal growth of dorsal root ganglia neurons under hyperglycemia[J].Mol Neurobiol201855(1):851-858.
[37]
Chentli F, Azzoug S, Mahgoun S.Diabetes mellitus in elderly[J].Indian J Endocrinol Metab201519(6):744-752.
[1] 曹雯佳, 刘学兵, 罗安果, 钟释敏, 邓岚, 王玉琳, 李赵欢. 超声矢量血流成像对2型糖尿病患者颈动脉壁剪切应力的研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(07): 709-717.
[2] 王杰, 袁泉, 王玥琦, 乔佳君, 谭春丽, 夏仲元, 刘守尧. 溃疡油在糖尿病足溃疡治疗中的应用效果及安全性观察[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 480-484.
[3] 徐志刚, 曹涛, 何亭, 李博奥, 魏婧韬, 张栋梁, 官浩, 杨薛康. 采用抗生素骨水泥治疗糖尿病患者心脏术后胸骨骨髓炎的临床效果观察[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 498-502.
[4] 姜珊, 李湘燕, 田硕涵, 温冰, 何睿, 齐心. 采用优化抗感染治疗模式改善糖尿病足感染预后的临床观察[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(05): 398-403.
[5] 别瑶, 曹志斌, 辛静, 王健楠, 惠宗光. 应用基质血管成分细胞治疗糖尿病足溃疡的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(05): 453-456.
[6] 孟令凯, 李大勇, 王宁, 王桂明, 张炳南, 李若彤, 潘立峰. 袖状胃切除术对肥胖伴2型糖尿病大鼠的作用及机制研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 638-642.
[7] 李猛, 姜腊, 董磊, 吴情, 贾犇黎. 腹腔镜胃袖状切除术治疗肥胖合并2型糖尿病及脂肪胰的临床研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(05): 554-557.
[8] 严虹霞, 王晓娟, 张毅勋. 2 型糖尿病对结直肠癌患者肿瘤标记物、临床病理及预后的影响[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 483-487.
[9] 周学锋, 董哲毅, 冯哲, 蔡广研, 陈香美. 糖尿病肾脏疾病中西医结合诊疗指南计划书[J/OL]. 中华肾病研究电子杂志, 2024, 13(06): 301-305.
[10] 杜军霞, 赵小淋, 王浩然, 高志远, 王曼茜, 万楠熙, 张冬, 丁潇楠, 任琴琴, 段颖洁, 汤力, 朱晗玉. 2 型糖尿病的血液透析患者肠道微生物组学高通量测序分析[J/OL]. 中华肾病研究电子杂志, 2024, 13(06): 313-320.
[11] 王国强, 张纲, 唐建坡, 张玉国, 杨永江. LINC00839 调节miR-17-5p/WEE1 轴对结直肠癌细胞增殖、凋亡和迁移的影响[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 491-499.
[12] 邱岭, 朱旭丽, 浦坚, 邢苗苗, 吴佳玲. 糖尿病肾病患者肠道菌群生态特点与胃肠道功能障碍的关联性研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 453-458.
[13] 王璇, 娜扎开提·尼加提, 雒洋洋, 蒋升. 皮肤晚期糖基化终末产物浓度与2型糖尿病微血管并发症的相关性[J/OL]. 中华临床医师杂志(电子版), 2024, 18(05): 447-454.
[14] 王星, 陈园, 热孜万古丽·乌斯曼, 郭艳英. T2DM、Obesity、NASH、PCOS共同致病因素相关的分子机制[J/OL]. 中华临床医师杂志(电子版), 2024, 18(05): 481-490.
[15] 李玺, 蔡芸莹, 张永红, 苏恒. 假性软骨发育不全合并1型糖尿病一例[J/OL]. 中华临床医师杂志(电子版), 2024, 18(05): 518-520.
阅读次数
全文


摘要