切换至 "中华医学电子期刊资源库"

中华诊断学电子杂志 ›› 2021, Vol. 09 ›› Issue (04) : 285 -288. doi: 10.3877/cma.j.issn.2095-655X.2021.04.016

综述

微小RNA与糖尿病周围神经病变研究进展
苏畅1, 梁秋华2, 孙琳3,()   
  1. 1. 272013 济宁医学院临床医学院
    2. 272029 济宁医学院附属医院内分泌科
    3. 272002 济宁市第一人民医院内分泌科
  • 收稿日期:2021-01-25 出版日期:2021-11-26
  • 通信作者: 孙琳
  • 基金资助:
    山东省自然科学基金面上项目(ZR2019MH087)

The research progress of miRNA and diabetic peripheral neuropathy

Chang Su1, Qiuhua Liang2, Lin Sun3,()   

  1. 1. Clinical Medical College, Jining Medical University, Jining 272013, China
    2. Department of Endocrinology, The Affiliated Hospital of Jining Medical University, Jining 272029, China
    3. Department of Endocrinology, The First People′s Hospital of Jining, Jining 272002, China
  • Received:2021-01-25 Published:2021-11-26
  • Corresponding author: Lin Sun
引用本文:

苏畅, 梁秋华, 孙琳. 微小RNA与糖尿病周围神经病变研究进展[J]. 中华诊断学电子杂志, 2021, 09(04): 285-288.

Chang Su, Qiuhua Liang, Lin Sun. The research progress of miRNA and diabetic peripheral neuropathy[J]. Chinese Journal of Diagnostics(Electronic Edition), 2021, 09(04): 285-288.

糖尿病周围神经病变(DPN)是糖尿病常见的并发症之一,临床表现为四肢疼痛、麻木、感觉异常和溃疡,是非创伤性截肢的主要原因。微小RNA(miRNA)属于非编码RNA的一种,是一类进化上高度保守的RNA,通常长度为18~25个碱基。miRNA通过调节多个基因在多种疾病和细胞类型中的作用被陆续报道,如细胞生长、增殖、分化、凋亡、转录后基因调节等。有研究发现,miRNA与神经传导、损伤、凋亡等密切相关,因此其可作为DPN诊断、预后的生物标志物和潜在分子治疗的靶点。笔者主要综述miRNA在DPN中的作用,以及基于miRNA治疗方法的相关研究进展。

Diabetic peripheral neuropathy (DPN) is one of the common complications of diabetes, with clinical manifestations including limb pain, numbness, paresthesia and ulceration. DPN is the main cause of non-traumatic amputation. MicroRNA (miRNA) belongs to non-coding RNA (ncRNA) and is an evolutionarily highly conservative RNA, usually 18-25 bases in length. MiRNA has been reported one after another by regulating the roles of multiple genes in a variety of diseases and cell types, such as cell growth, proliferation, differentiation, apoptosis, posttranscriptional gene regulation, and others. Studies have found that miRNA is closely related to nerve conduction, injury, and apoptosis, so miRNA can be used as biomarkers for the diagnosis and prognosis of DPN and as targets for potential molecular therapy. This article mainly reviews the role of miRNA in DPN and the related research progress based on miRNA therapy.

[1]
付煊,高晖,阿米娜,等.2型糖尿病患者血糖水平及血糖变异性与糖化血红蛋白水平的相关性研究[J/CD].中华诊断学电子杂志20208(4):242-247.
[2]
Eberle C, Stichling S.Clinical improvements by telemedicine interventions managing type 1 and type 2 diabetes: systematic meta-review[J].J Med Internet Res202123(2):e23244.
[3]
Nguyen N, Takemoto JK.A case for alpha-lipoic acid as an alternative treatment for diabetic polyneuropathy[J].J Pharm Pharm Sci201821(1s):177s-191s.
[4]
Lee KA, Park TS, Jin HY.Non-glucose risk factors in the pathogenesis of diabetic peripheral neuropathy[J].Endocrine202070(3):465-478.
[5]
Zhang X, Gong X, Han S,et al.MiR-29b protects dorsal root ganglia neurons from diabetic rat[J].Cell BiochemBiophys201470(2):1105-1111.
[6]
Jia L, Wang L, Chopp M,et al.MicroRNA 146a locally mediates distal axonal growth of dorsal root ganglia neurons under high glucose and sildenafil conditions[J].Neuroscience2016(329):43-53.
[7]
Pop-Busui R, Boulton AJ, Feldman EL,et al.Diabetic neuropathy:a position statement by the American diabetes association[J].Diabetes Care201740(1):136-154.
[8]
Sala D, Zorzano A.Differential control of muscle mass in type 1 and type 2 diabetes mellitus[J].Cell Mol Life Sci201572(20):3803-3817.
[9]
Papanas N, Ziegler D.Risk factors and comorbidities in diabetic neuropathy: an update 2015[J].Rev Diabet Stud201512(1-2):48-62.
[10]
Obrosova IG, Van Huysen C, Fathallah L,et al.An aldose reductase inhibitor reverses early diabetes-induced changes in peripheral nerve function,metabolism,and antioxidative defense[J].FASEB J200216(1):123-125.
[11]
Vincent AM, Feldman EL. New insights into the mechanisms of diabetic neuropathy[J].Rev Endocr Metab Disord20045(3):227-236.
[12]
Vincent AM, Hayes JM, McLean LL,et al.Dyslipidemia-induced neuropathy in mice: the role of oxLDL/LOX-1[J].Diabetes200958(10):2376-2385.
[13]
Zhou H, Zhang W. Gene expression profiling reveals candidate biomarkers and probable molecular mechanism in diabetic peripheral neuropathy[J].Diabetes Metab Syndr Obes2019(12):1213-1223.
[14]
Bönhof GJ, Herder C, Strom A,et al.Emerging biomarkers,tools,and treatments for diabetic polyneuropathy[J].Endocr Rev201940(1):153-192.
[15]
Hoffmann M, Kujath P, Flemming A, et al. Survival of diabetes patients with major amputation is comparable to malignant disease[J].Diab Vasc Dis Res201512(4):265-271.
[16]
Singh N, Armstrong DG, Lipsky BA. Preventing foot ulcers in patients with diabetes[J].JAMA2005293(2):217-228.
[17]
Mitchelson KR, Qin WY.Roles of the canonical myomiRs miR-1,-133 and -206 in cell development and disease[J].World J Biol Chem20156(3):162-208.
[18]
Duong Van Huyen JP, Tible M, Gay A,et al.MicroRNAs as non-invasive biomarkers of heart transplant rejection[J].Eur Heart J201435(45):3194-3202.
[19]
Kozomara A, Griffiths-Jones S.MiRBase:annotating high confidence microRNAs using deep sequencing data[J].Nucleic Acids Res201442(Database issue):D68-D73.
[20]
Lewis BP, Burge CB, Bartel DP.Conserved seed pairing,often flanked by adenosines,indicates that thousands of human genes are microRNA targets[J].Cell2005120(1):15-20.
[21]
Osmai M, Osmai Y, Bang-Berthelsen CH, et al. MicroRNAs as regulators of beta-cell function and dysfunction[J].Diabetes Metab Res Rev201632(4):334-349.
[22]
Duksal T, Tiftikcioglu BI, Bilgin S,et al.Role of inflammation in sensory neuropathy in prediabetes or diabetes[J].Acta Neurol Scand2016133(5):384-390.
[23]
Bai X, Zhang J, Cao M,et al.MicroRNA-146a protects against LPS-induced organ damage by inhibiting Notch1 in macrophage[J].Int Immunopharmacol2018(63):220-226.
[24]
Thakkar S, Wang X, Khaidakov M, et al. Structure-based design targeted at LOX-1,a receptor for oxidized low-density lipoprotein[J].Sci Rep2015(5):16740.
[25]
Liu XS, Fan B, Szalad A,et al.MicroRNA-146a mimics reduce the peripheral neuropathy in type 2 diabetic mice[J].Diabetes201766(12):3111-3121.
[26]
Tardito S, Martinelli G, Soldano S,et al.Macrophage M1/M2 polarization and rheumatoid arthritis:a systematic review[J].Autoimmun Rev201918(11):102397.
[27]
Ren W, Xi G, Li X,et al.Long non-coding RNA HCG18 promotes M1 macrophage polarization through regulating the miR-146a/TRAF6 axis,facilitating the progression of diabetic peripheral neuropathy[J].Mol Cell Biochem2021476(1):471-482.
[28]
Meza-Sosa KF, Pedraza-Alva G, Pérez-Martínez L.MicroRNAs:key triggers of neuronal cell fate[J].Front Cell Neurosci2014(8):175.
[29]
Zhang Y, Song C, Liu J, et al. Inhibition of miR-25 aggravates diabetic peripheral neuropathy[J].Neuroreport201829(11):945-953.
[30]
Li H, Zhu X, Zhang J, et al. MicroRNA-25 inhibits high glucose-induced apoptosis in renal tubular epithelial cells via PTEN/AKT pathway[J].Biomed Pharmacother2017(96):471-479.
[31]
Wang C, Xu X, Chen J, et al. The construction and analysis of lncRNA-miRNA-mRNA competing endogenous RNA network of schwann cells in diabetic peripheral neuropathy[J].Front Bioeng Biotechnol2020(8):490.
[32]
Gregory PA, Bert AG, Paterson EL,et al.The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1[J].Nat Cell Biol200810(5):593-601.
[33]
Kurashige J, Kamohara H, Watanabe M, et al. MicroRNA-200b regulates cell proliferation,invasion,and migration by directly targeting ZEB2 in gastric carcinoma[J].Ann Surg Oncol201219 (Suppl 3):S656-S664.
[34]
Lewin GR, Lechner SG, Smith ES.Nerve growth factor and nociception:from experimental embryology to new analgesic therapy[J].Handb Exp Pharmacol2014(220):251-282.
[35]
Zhang Y, Chopp M, Liu XS,et al.MicroRNAs in the axon locally mediate the effects of chondroitin sulfate proteoglycans and cGMP on axonal growth[J].Dev Neurobiol201575(12):1402-1419.
[36]
Jia L, Wang L, Chopp M,et al.MiR-29c/PRKCI regulates axonal growth of dorsal root ganglia neurons under hyperglycemia[J].Mol Neurobiol201855(1):851-858.
[37]
Chentli F, Azzoug S, Mahgoun S.Diabetes mellitus in elderly[J].Indian J Endocrinol Metab201519(6):744-752.
[1] 何金梅, 尹立雪, 谭静, 张文军, 王锐, 任梅, 廖明娇. 超声心肌做功技术对2型糖尿病患者潜在左心室心肌收缩功能损伤的评价[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1029-1035.
[2] 王珏, 陈赛君, 贲志飞, 詹锦勇, 徐开颖. 剪切波弹性成像联合极速脉搏波技术评估颈动脉弹性对糖尿病性视网膜病变的预测价值[J]. 中华医学超声杂志(电子版), 2023, 20(06): 636-641.
[3] 王璐, 樊杨. 子宫内膜癌相关生物标志物研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 511-516.
[4] 罗晨, 宗开灿, 李世颖, 傅应亚. 微小RNA-199a-3p调控CD4T细胞表达参与肺炎支原体肺炎患儿免疫反应研究[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 569-574.
[5] 陈絮, 詹玉茹, 王纯华. 孕妇ABO血型联合甲状腺功能检测对预测妊娠期糖尿病的临床价值[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 604-610.
[6] 张健, 刘小龙, 查天建, 姚俊杰, 王傑. 富含血小板血浆联合异种脱细胞真皮基质修复糖尿病足缺血性创面的临床效果[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 503-506.
[7] 赵雅玫, 谢斌, 陈艳, 吴健. 抗生素骨水泥联合负压封闭引流对糖尿病足溃疡临床疗效的荟萃分析[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 427-433.
[8] 李琛, 张惟佳, 潘亚萍. 牙周炎与系统性疾病之间关系的应用思考:2022年EFP和WONCA欧洲分部联合研讨会共识报告的解读及启示[J]. 中华口腔医学研究杂志(电子版), 2023, 17(05): 322-327.
[9] 叶弘, 吕婧喆, 钟良军. 白藜芦醇治疗牙周炎和糖尿病的新进展[J]. 中华口腔医学研究杂志(电子版), 2023, 17(05): 376-380.
[10] 黄岩, 刘晓巍, 杨春玲, 兰烨. 急性胰腺炎合并糖尿病患者的临床特征及血糖代谢与病情严重度的相关性[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 439-442.
[11] 张政赢, 鞠阳, 刘晓宁. 二甲双胍对2型糖尿病患者大肠腺瘤术后复发的影响[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 485-488.
[12] 薛念余, 张盛敏, 吴凌恒, 沙蕾, 童揽月, 沈崔琴, 李朝军, 杜联芳. 研究血清胆红素对2型糖尿病患者心脏结构发生改变前心肌功能的影响[J]. 中华临床医师杂志(电子版), 2023, 17(9): 1004-1009.
[13] 袁媛, 赵良平, 刘智慧, 张丽萍, 谭丽梅, 閤梦琴. 子宫内膜癌组织中miR-25-3p、PTEN的表达及与病理参数的关系[J]. 中华临床医师杂志(电子版), 2023, 17(9): 1016-1020.
[14] 谢国晓, 赵凌霞, 薛雪花. 慢性病管理模式在糖尿病社区管理中的应用[J]. 中华临床医师杂志(电子版), 2023, 17(05): 587-590.
[15] 刘感哲, 艾芬. MiRNA-210通过抑制HIF-1α的表达改善大鼠血管性认知功能障碍[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 489-494.
阅读次数
全文


摘要