[1] |
Kim DS, Kim BC, Daily JW, et al. High genetic risk scores for impaired insulin secretory capacity doubles the risk for type 2 diabetes in Asians and is exacerbated by Western-type diets[J]. Diabetes Metab Res Rev, 2018, 34(1):e2944.DOI: 10.1002/dmrr.2944.
|
[2] |
Meikle PJ, Summers SA.Sphingolipids and phospholipids in insulin resistance and related metabolic disorders[J]. Nat Rev Endocrinol, 2017, 13(2): 79-91.DOI: 10.1038/nrendo.2016.169.
|
[3] |
Saeedi P, Petersohn I, Salpea P,et al.Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045:results from the International Diabetes Federation Diabetes Atlas, 9th edition[J]. Diabetes Res Clin Pract, 2019(157):107843.DOI: 10.1016/j.diabres.2019.107843.
|
[4] |
Vasiliauskaité-Brooks I, Sounier R, Rochaix P, et al. Structural insights into adiponectin receptors suggest ceramidase activity[J]. Nature, 2017, 544(7648):120-123.DOI: 10.1038/nature21714.
|
[5] |
Ogretmen B. Sphingolipid metabolism in cancer signalling and therapy[J]. Nat Rev Cancer, 2018, 18(1):33-50.DOI: 10.1038/nrc.2017.96.
|
[6] |
Hannun YA, Obeid LM.Sphingolipids and their metabolism in physiology and disease[J]. Nat Rev Mol Cell Biol, 2018, 19(3):175-191.DOI: 10.1038/nrm.2017.107.
|
[7] |
Galadari S, Rahman A, Pallichankandy S,et al.Role of ceramide in diabetes mellitus: evidence and mechanisms[J]. Lipids Health Dis, 2013(12):98.DOI: 10.1186/1476-511X-12-98.
|
[8] |
Woo CY, Baek JY, Kim AR,et al.Inhibition of ceramide accumulation in podocytes by myriocin prevents diabetic nephropathy[J]. Diabetes Metab J, 2020, 44(4):581-591.DOI: 10.4093/dmj.2019.0063.
|
[9] |
Raichur S, Brunner B, Bielohuby M, et al. The role of C16:0 ceramide in the development of obesity and type 2 diabetes: CerS6 inhibition as a novel therapeutic approach[J]. Mol Metab, 2019(21): 36-50.DOI: 10.1016/j.molmet.2018.12.008.
|
[10] |
Filippatou AG, Moniruzzaman M, Sotirchos ES, et al. Serum ceramide levels are altered in multiple sclerosis[J]. Mult Scler, 2021, 27(10):1506-1519.DOI: 10.1177/1352458520971816.
|
[11] |
Garić D, De Sanctis JB, Shah J,et al.Biochemistry of very-long-chain and long-chain ceramides in cystic fibrosis and other diseases:the importance of side chain[J]. Prog Lipid Res, 2019(74):130-144.DOI: 10.1016/j.plipres.2019.03.001.
|
[12] |
Chakravarthy H, Navitskaya S, O'Reilly S ,et al.Role of acid sphingomyelinase in shifting the balance between proinflammatory and reparative bone marrow cells in diabetic retinopathy[J]. Stem Cells, 2016, 34(4):972-983.DOI: 10.1002/stem.2259.
|
[13] |
Pant DC, Aguilera-Albesa S, Pujol A.Ceramide signalling in inherited and multifactorial brain metabolic diseases[J]. Neurobiol Dis, 2020(143):105014.DOI: 10.1016/j.nbd.2020.105014.
|
[14] |
Morad SA, Cabot MC.Ceramide-orchestrated signalling in cancer cells[J]. Nat Rev Cancer, 2013, 13(1): 51-65.DOI: 10.1038/nrc3398.
|
[15] |
Castro BM, Prieto M, Silva LC.Ceramide: a simple sphingolipid with unique biophysical properties[J]. Prog Lipid Res, 2014(54):53-67.DOI: 10.1016/j.plipres.2014.01.004.
|
[16] |
Yaribeygi H, Bo S, Ruscica M,et al.Ceramides and diabetes mellitus:an update on the potential molecular relationships[J]. Diabet Med, 2020, 37(1):11-19.DOI: 10.1111/dme.13943.
|
[17] |
Park WJ, Song JH, Kim GT, et al. Ceramide and Sphingosine 1-phosphate in liver diseases[J]. Mol Cells, 2020, 43(5):419-430.DOI: 10.14348/molcells.2020.0054.
|
[18] |
Kitatani K, Idkowiak-Baldys J, Hannun YA. The sphingolipid salvage pathway in ceramide metabolism and signaling[J]. Cell Signal, 2008, 20(6): 1010-1018.DOI: 10.1016/j.cellsig.2007.12.006.
|
[19] |
Chaurasia B, Tippetts TS, Mayoral Monibas R, et al. Targeting a ceramide double bond improves insulin resistance and hepatic steatosis[J]. Science, 2019, 365(6451): 386-392.DOI: 10.1126/science.aav3722.
|
[20] |
Xia QS, Lu FE, Wu F,et al.New role for ceramide in hypoxia and insulin resistance[J]. World J Gastroenterol, 2020, 26(18): 2177-2186.DOI: 10.3748/wjg.v26.i18.2177.
|
[21] |
Mandal N, Grambergs R, Mondal K,et al.Role of ceramides in the pathogenesis of diabetes mellitus and its complications[J]. J Diabetes Complications, 2021, 35(2):107734.DOI: 10.1016/j.jdiacomp.2020.107734.
|
[22] |
Baranowski M, Blachnio-Zabielska A, Hirnle T,et al.Myocardium of type 2 diabetic and obese patients is characterized by alterations in sphingolipid metabolic enzymes but not by accumulation of ceramide[J]. J Lipid Res, 2010, 51(1): 74-80.DOI: 10.1194/jlr.M900002-JLR200.
|
[23] |
Sugimoto M, Shimizu Y, Zhao S,et al.Characterization of the role of sphingomyelin synthase 2 in glucose metabolism in whole-body and peripheral tissues in mice[J]. Biochim Biophys Acta, 2016, 1861(8 Pt A):688-702.DOI: 10.1016/j.bbalip.2016.04.019.
|
[24] |
Holland WL, Brozinick JT, Wang LP,et al.Inhibition of ceramide synthesis ameliorates glucocorticoid-,saturated-fat-,and obesity-induced insulin resistance[J]. Cell Metab, 2007, 5(3):167-179.DOI: 10.1016/j.cmet.2007.01.002.
|
[25] |
Lennon R, Pons D, Sabin MA, et al. Saturated fatty acids induce insulin resistance in human podocytes: implications for diabetic nephropathy[J]. Nephrol Dial Transplant, 2009, 24(11):3288-3296.DOI: 10.1093/ndt/gfp302.
|
[26] |
Hilvo M, Salonurmi T, Havulinna AS, et al. Ceramide stearic to palmitic acid ratio predicts incident diabetes[J]. Diabetologia, 2018, 61(6):1424-1434.DOI: 10.1007/s00125-018-4590-6.
|
[27] |
Stitt AW, Lois N, Medina RJ,et al.Advances in our understanding of diabetic retinopathy[J]. Clin Sci(Lond), 2013, 125(1):1-17.DOI: 10.1042/CS20120588.
|
[28] |
Brownlee M.Biochemistry and molecular cell biology of diabetic complications[J]. Nature, 2001, 414(6865):813-820.DOI: 10.1038/414813a.
|
[29] |
Opreanu M, Tikhonenko M, Bozack S,et al.The unconventional role of acid sphingomyelinase in regulation of retinal microangiopathy in diabetic human and animal models[J]. Diabetes, 2011, 60(9):2370-2378.DOI: 10.2337/db10-0550.
|
[30] |
Levitsky Y, Hammer SS, Fisher KP,et al.Mitochondrial ceramide effects on the retinal pigment epithelium in diabetes[J]. Int J Mol Sci, 2020, 21(11):3830.DOI: 10.3390/ijms21113830.
|
[31] |
Molitch ME, Adler AI, Flyvbjerg A,et al.Diabetic kidney disease: a clinical update from kidney disease:improving global outcomes[J]. Kidney Int, 2015, 87(1):20-30.DOI: 10.1038/ki.2014.128.
|
[32] |
Wada J, Makino H.Inflammation and the pathogenesis of diabetic nephropathy[J]. Clin Sci(Lond), 2013, 124(3):139-152.DOI: 10.1042/CS20120198.
|
[33] |
Lang F, Ullrich S, Gulbins E.Ceramide formation as a target in beta-cell survival and function[J]. Expert Opin Ther Targets, 2011, 15(9):1061-1071.DOI: 10.1517/14728222.2011.588209.
|
[34] |
Choi SR, Lim JH, Kim MY, et al. Adiponectin receptor agonist AdipoRon decreased ceramide,and lipotoxicity,and ameliorated diabetic nephropathy[J]. Metabolism, 2018(85):348-360.DOI: 10.1016/j.metabol.2018.02.004.
|
[35] |
Holland WL, Xia JY, Johnson JA,et al.Inducible overexpression of adiponectin receptors highlight the roles of adiponectin-induced ceramidase signaling in lipid and glucose homeostasis[J]. Mol Metab, 2017, 6(3):267-275.DOI: 10.1016/j.molmet.2017.01.002.
|
[36] |
Sas KM, Nair V, Byun J,et al.Targeted lipidomic and transcriptomic analysis identifies dysregulated renal ceramide metabolism in a mouse model of diabetic kidney disease[J]. J Proteomics Bioinform, 2015(14): 2.DOI: 10.4172/jpb.S14-002.
|
[37] |
Morita Y, Kurano M, Sakai E,et al.Analysis of urinary sphingolipids using liquid chromatography-tandem mass spectrometry in diabetic nephropathy[J]. J Diabetes Investig, 2020, 11(2):441-449.DOI: 10.1111/jdi.13154.
|
[38] |
Klein RL, Hammad SM, Baker NL,et al.Decreased plasma levels of select very long chain ceramide species are associated with the development of nephropathy in type 1 diabetes[J]. Metabolism, 2014, 63(10):1287-1295.DOI: 10.1016/j.metabol.2014.07.001.
|
[39] |
Peterson LR, Jiang X, Chen L,et al.Alterations in plasma triglycerides and ceramides:links with cardiac function in humans with type 2 diabetes[J]. J Lipid Res, 2020, 61(7):1065-1074.DOI: 10.1194/jlr.RA120000669.
|
[40] |
Yu J, Pan W, Shi R,et al.Ceramide is upregulated and associated with mortality in patients with chronic heart failure[J]. Can J Cardiol, 2015, 31(3):357-363.DOI: 10.1016/j.cjca.2014.12.007.
|
[41] |
Wang DD, Toledo E, Hruby A,et al.Plasma ceramides,mediterranean diet,and incident cardiovascular disease in the predimed trial (Prevención con Dieta Mediterránea)[J]. Circulation, 2017, 135(21): 2028-2040.DOI: 10.1161/CIRCULATIONAHA.116.024261.
|
[42] |
Callaghan BC, Little AA, Feldman EL, et al. Enhanced glucose control for preventing and treating diabetic neuropathy[J]. Cochrane Database Syst Rev, 2012, 6(6):CD007543.DOI: 10.1002/14651858.CD007543.pub2.
|
[43] |
Callaghan BC, Gallagher G, Fridman V,et al.Diabetic neuropathy: what does the future hold?[J]. Diabetologia, 2020, 63(5):891-897.DOI: 10.1007/s00125-020-05085-9.
|
[44] |
Zuellig RA, Hornemann T, Othman A,et al.Deoxysphingolipids,novel biomarkers for type 2 diabetes,are cytotoxic for insulin-producing cells[J]. Diabetes, 2014, 63(4):1326-1339.DOI: 10.2337/db13-1042.
|
[45] |
Hammad SM, Baker NL, El Abiad JM, et al. Increased plasma levels of select Deoxy-ceramide and ceramide species are associated with increased odds of diabetic neuropathy in type 1 diabetes: a pilot study[J]. Neuromolecular Med, 2017, 19(1):46-56.DOI: 10.1007/s12017-016-8423-9.
|
[46] |
Langeslag M, Kress M.The ceramide-S1P pathway as a druggable target to alleviate peripheral neuropathic pain[J]. Expert Opin Ther Targets, 2020, 24(9): 869-884.DOI: 10.1080/14728222.2020.1787989.
|
[47] |
Li C, Li JN, Kays J,et al.Sphingosine 1-phosphate enhances the excitability of rat sensory neurons through activation of sphingosine 1-phosphate receptors 1 and/or 3[J]. J Neuroinflammation, 2015(12):70.DOI: 10.1186/s12974-015-0286-8.
|