切换至 "中华医学电子期刊资源库"

中华诊断学电子杂志 ›› 2022, Vol. 10 ›› Issue (03) : 152 -157. doi: 10.3877/cma.j.issn.2095-655X.2022.03.002

内分泌代谢性疾病诊治

体检人群甘油三酯葡萄糖指数对非酒精性脂肪性肝病发病风险的诊断价值
张梅玉1, 吴胜利2, 向蔚婷2, 孙克红1, 李农2,()   
  1. 1. 834000 克拉玛依市中西医结合医院(市人民医院)健康管理体检中心
    2. 834000 克拉玛依市中西医结合医院(市人民医院)内分泌代谢中心
  • 收稿日期:2021-08-16 出版日期:2022-08-26
  • 通信作者: 李农
  • 基金资助:
    国家重点研发计划重点专项(2018YFC1311800)

The diagnostic value of the triglyceride-glucose index in predicting the risk of non-alcoholic fatty liver disease in physical examination population

Meiyu Zhang1, Shengli Wu2, Weiting Xiang2, Kehong Sun1, Nong Li2,()   

  1. 1. Health Management and Physical Examination Center, Karamay Integrated Chinese and Western Hospital (Municipal People′s Hospital), Karamay 834000, China
    2. Endocrine Metabolic Center, Karamay Integrated Chinese and Western Hospital (Municipal People′s Hospital), Karamay 834000, China
  • Received:2021-08-16 Published:2022-08-26
  • Corresponding author: Nong Li
引用本文:

张梅玉, 吴胜利, 向蔚婷, 孙克红, 李农. 体检人群甘油三酯葡萄糖指数对非酒精性脂肪性肝病发病风险的诊断价值[J]. 中华诊断学电子杂志, 2022, 10(03): 152-157.

Meiyu Zhang, Shengli Wu, Weiting Xiang, Kehong Sun, Nong Li. The diagnostic value of the triglyceride-glucose index in predicting the risk of non-alcoholic fatty liver disease in physical examination population[J]. Chinese Journal of Diagnostics(Electronic Edition), 2022, 10(03): 152-157.

目的

探讨体检人群甘油三酯葡萄糖(TyG)指数对非酒精性脂肪性肝病(NAFLD)发病风险的诊断价值。

方法

选取2018年12月至2019年12月于克拉玛依市中西医结合医院(市人民医院)进行健康体检的新疆油田公司和西部钻探公司的8 860例企业职工作为研究对象。采集研究对象的一般临床资料、血液生化指标、超声检查结果等,并计算TyG指数。应用多因素Logistic回归,分析NAFLD的危险因素;并使用受试者工作特征(ROC)曲线分析TyG指数对NAFLD发病的预测价值。

结果

3 261例为NAFLD。多因素Logistic回归分析结果显示,TyG指数、年龄、收缩压、腰围和丙氨酸转氨酶是NAFLD的独立危险因素,OR值(95%CI)分别为3.294(2.933~3.699)、1.013(1.006~1.020)、1.007(1.001~1.012)、1.092(1.085~1.100)和1.029(1.026~1.033)(均P<0.05)。ROC曲线分析结果显示,TyG指数的曲线下面积为0.818,TyG指数诊断NAFLD的截断值为4.310。

结论

TyG指数能够较好预测NAFLD的发病风险,可作为筛查NAFLD高危人群的有效指标。

Objective

To explore the predictive value of triglyceride-glucose (TyG) index on the risk of non-alcoholic fatty liver disease (NAFLD) in physical examination population.

Methods

From December 2018 to December 2019, a total of 8 860 employees from Xinjiang Oilfield Company and Western Drilling Company who underwent physical examinations in the Karamay Integrated Chinese and Western Hospital (Municipal People′s Hospital) were chosen as the research subjects. The subjects′ general clinical data, blood biochemical indexes, and ultrasonic examination results were collected, and the TyG index was calculated. The risk factors for NAFLD were studied using multivariate logistic regression. The receiver operating characteristic (ROC) curve was used to assess the predictive value of the TyG index for NAFLD.

Results

NAFLD affected 3 261 patients. The TyG index, age, systolic blood pressure, abdominal girth, and alanine aminotransferase were found to be independent risk factors for NAFLD, with ORs of 3.294(2.933-3.699), 1.013(1.006-1.020), 1.007(1.001-1.012), 1.092(1.085-1.100), and 1.029(1.026-1.033)(all P<0.05). The area under the curve (AUC) of TyG index was 0.818 according to the ROC curve analysis, and the cut-off value of TyG index in diagnosing NAFLD was 4.310.

Conclusion

The TyG index can better predict NAFLD risk and be used as an effective indicator for screening NAFLD high-risk populations.

表1 NAFLD组与无NAFLD组人群一般资料比较
表2 非酒精性脂肪性肝病发病危险因素的Logistic回归分析
表3 TyG指数与非酒精性脂肪性肝病发病风险相关性的亚组Logistic回归分析结果
图1 甘油三酯葡萄糖指数诊断非酒精性脂肪性肝病的ROC曲线
表4 男性和女性TyG指数诊断非酒性脂肪性肝病的效能比较
[1]
Younossi ZMKoenig ABAbdelatif D,et al.Global epidemiology of nonalcoholic fatty liver disease:meta analytic assessment of prevalence,incidence,and outcomes[J].Hepatology201664(1):73-84.DOI:10.1002/hep.28431.
[2]
Zhu JZ, Zhou QY, Wwang YM, et al. Prevalence of fatty liver disease and the economy in China:a systematic review[J].World J Gastroenterol201521(18):5695-5706.DOI:10.3748/wjg.v21.i18.5695.
[3]
Buzzetti EPinzani MTsochatzis EA.The multiple-hit pathogenesis of non-alcoholic fatty liver disease(NAFLD)[J].Metabolism201665(8):1038-1048.DOI:10.1016/j.metabol.2015.12.012.
[4]
Makri EGoulas APolyzos SA.Epidemiology,pathogenesis,diagnosis and emerging treatment of nonalcoholic fatty liver disease[J].Arch Med Res202152(1):25-37.DOI:10.1016/j.arcmed.2020.11.010.
[5]
Cobbina EAkhlaghi F.Non-alcoholic fatty liver disease(NAFLD)-pathogenesis,classification,and effect on drug metabolizing enzymes and transporters[J].Drug Metab Rev201749(2):197-211.DOI:10.1080/03602532.2017.1293683.
[6]
Guerrero-Romero FSimental-Mendia LEGonzález-Ortiz M,et al.The product of triglycerides and glucose,a simple measure of insulin sensitivity.Comparison with the euglycemic-hyperinsulinemic clamp[J].J Clin Endocrinol Metab201095(7):3347-3351.DOI:10.1210/jc.2010-0288.
[7]
Vasques AC, Novaes FS, de Oliveira Mda S, et al. TyG index performs better than HOMA in a Brazilian population:a hyperglycemic clamp validated study[J].Diabetes Res Clin Pract201193(3):e98-e100.DOI:10.1016/j.diabres.2011.05.030.
[8]
Khan SHSobia FNiazi NK, et al.Metabolic clustering of risk factors:evaluation of Triglyceride-glucose index (TyG index) for evaluation of insulin resistance[J].Diabetol Metab Syndr2018(10):74.DOI:10.1186/s13098-018-0376-8.
[9]
Song KPark GLee HS,et al.Prediction of insulin resistance by modified triglyceride glucose indices in youth[J].Life (Basel)202111(4):286.DOI:10.3390/life11040286.
[10]
中华医学会肝病学分会脂肪肝和酒精性肝病学组,中国医师协会脂肪性肝病专家委员会.非酒精性脂肪性肝病防治指南(2018年更新版)[J].实用肝脏病杂志201821(2):177-186.DOI:10.3969/j.issn.1672-5069.2018.02.007.
[11]
Chalasani N, Younossi Z, Lavine JE, et al. The diagnosis and management of nonalcoholic fatty liver disease:practice guidance from the American Association for the Study of Liver Diseases[J].Hepatology201867(1):328-357.DOI:10.1002/hep.29367.
[12]
Wang XJMalhi H.Nonalcoholic fatty liver disease[J].Ann Intern Med2018169(9):ITC65-ITC80.DOI:10.7326/AITC201811060.
[13]
Khan RSBril FCusi K,et al.Modulation of insulin resistance in nonalcoholic fatty liver disease[J].Hepatology201970(2):711-724.DOI:10.1002/hep.30429.
[14]
吴挺丰,廖献花,钟碧慧.中国部分地区非酒精性脂肪性肝病的流行情况[J].临床肝胆病杂志202036(6):1370-1373.DOI:10.3969/j.issn.1001-5256.2020.06.039.
[15]
齐婷,黎国红,程文强,等.非酒精性脂肪肝病相关危险因素与代谢综合征的关系研究[J/CD].中华诊断学电子杂志20153(3):204-207.DOI:10.3877/cma.j.issn.2095-655X.2015.03.014.
[16]
Kitae AHashimoto YHamaguchi M,et al.The triglyceride and glucose index is a predictor of incident nonalcoholic fatty liver disease:a population-based cohort study[J].Can J Gastroenterol Hepatol2019(2019):5121574.DOI:10.1155/2019/5121574.
[17]
Simental-Mendía LESimental-Mendía ERodríguez-Hernández H,et al.The product of triglycerides and glucose as biomarker for screening simple steatosis and NASH in asymptomatic women[J].Ann Hepatol201615(5):715-720.DOI:10.5604/16652681.1212431.
[18]
Zheng RDu ZWang M,et al.A longitudinal epidemiological study on the triglyceride and glucose index and the incident nonalcoholic fatty liver disease[J].Lipids Health Dis201817(1):262.DOI:10.1186/s12944-018-0913-3.
[19]
Zhang SDu TZhang J,et al.The triglyceride and glucose index (TyG) is an effective biomarker to identify nonalcoholic fatty liver disease[J].Lipids Health Dis201716(1):15.DOI:10.1186/s12944-017-0409-6.
[20]
Lee SBKim MKKang S,et al.Triglyceride glucose index is superior to the homeostasis model assessment of insulin resistance for predicting nonalcoholic fatty liver disease in Korean adults[J].Endocrinol Metab (Seoul)201934(2):179-186.DOI:10.3803/EnM.2019.34.2.179.
[21]
Huanan C, Sangsang L, Amoah AN, et al. Relationship between triglyceride glucose index and the incidence of non-alcoholic fatty liver disease in the elderly:a retrospective cohort study in China[J].BMJ Open202010(11):e039804.DOI:10.1136/bmjopen-2020-039804.
[22]
Ye Q, Zou B, Yeo YH, et al. Global prevalence, incidence, and outcomes of non-obese or lean non-alcoholic fatty liver disease:a systematic review and meta-analysis[J].Lancet Gastroenterol Hepatol20205(8):739-752.DOI:10.1016/S2468-1253(20)30077-7.
[23]
Shi Y, Wang Q, Sun Y, et al. The prevalence of lean/nonobese nonalcoholic fatty liver disease:a systematic review and meta-analysis[J].J Clin Gastroenterol202054(4):378-387.DOI:10.1097/MCG.0000000000001270 .
[24]
Alam SEslam MSkm Hasan N,et al.Risk factors of nonalcoholic fatty liver disease in lean body mass population:a systematic review and meta-analysis[J].JGH Open20215(11):1236-1249.DOI:10.1002/jgh3.12658.
[1] 陈永庄, 莫小乔, 谢天. 心血管事件患者术后30 d死亡风险决策树模型的构建与评估——基于少数类样本合成过采样技术算法[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 390-398.
[2] 范帅华, 郭伟, 郭军. 基于机器学习的决策树算法在血流感染预后预测中应用现状及展望[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(05): 289-293.
[3] 李圣鹏, 方爱蓝, 刘诗宁, 王丹, 刘湘奇. 下颌阻生第三磨牙拔除难度的预测因素与评估方法[J]. 中华口腔医学研究杂志(电子版), 2023, 17(06): 441-445.
[4] 张俊, 罗再, 段茗玉, 裘正军, 黄陈. 胃癌预后预测模型的研究进展[J]. 中华普通外科学文献(电子版), 2023, 17(06): 456-461.
[5] 唐旭, 韩冰, 刘威, 陈茹星. 结直肠癌根治术后隐匿性肝转移危险因素分析及预测模型构建[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 16-20.
[6] 贾成朋, 王代宏, 陈华, 孙备. 可切除性胰腺癌预后术前预测模型的建立及应用[J]. 中华普外科手术学杂志(电子版), 2023, 17(05): 566-570.
[7] 邢晓伟, 刘雨辰, 赵冰, 王明刚. 基于术前腹部CT的卷积神经网络对腹壁切口疝术后复发预测价值[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 677-681.
[8] 顾睿祈, 方洪生, 蔡国响. 循环肿瘤DNA检测在结直肠癌诊治中的应用与进展[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 453-459.
[9] 杨静, 顾红叶, 赵莹莹, 孙梦霞, 查园园, 王琪. 老年血液透析患者短期死亡的影响因素及列线图预测模型的预测作用[J]. 中华肾病研究电子杂志, 2023, 12(05): 254-259.
[10] 李飞翔, 段虎斌, 李晋虎, 吴昊, 王永红, 范益民. 急性颅脑损伤继发下肢静脉血栓的相关危险因素分析及预测模型构建[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 277-282.
[11] 李海马, 孙恺, 刘如恩. 颅内单纯生殖细胞瘤患者的生存预测:基于SEER数据库的临床研究[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 283-288.
[12] 秦维, 王丹, 孙玉, 霍玉玲, 祝素平, 郑艳丽, 薛瑞. 血清层粘连蛋白、Ⅳ型胶原蛋白对代偿期肝硬化食管胃静脉曲张出血的预测价值[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 447-451.
[13] 张郁妍, 胡滨, 张伟红, 徐楣, 朱慧, 羊馨玥, 刘海玲. 妊娠中期心血管超声参数与肝功能的相关性及对不良妊娠结局的预测价值[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 499-504.
[14] 王小娜, 谭微, 李悦, 姜文艳. 预测性护理对结直肠癌根治术患者围手术期生活质量、情绪及并发症的影响[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 525-529.
[15] 王亚丹, 吴静, 黄博洋, 王苗苗, 郭春梅, 宿慧, 王沧海, 王静, 丁鹏鹏, 刘红. 白光内镜下结直肠肿瘤性质预测模型的构建与验证[J]. 中华临床医师杂志(电子版), 2023, 17(06): 655-661.
阅读次数
全文


摘要