切换至 "中华医学电子期刊资源库"

中华诊断学电子杂志 ›› 2023, Vol. 11 ›› Issue (01) : 33 -36. doi: 10.3877/cma.j.issn.2095-655X.2023.01.007

神经精神疾病诊治

小胶质细胞极化在神经病理性疼痛发生发展过程中的作用研究进展
白鲁岳1, 赵思齐1, 高升2, 杨涛1, 孟纯阳3,()   
  1. 1. 272013 济宁医学院临床医学院
    2. 266073 青岛大学医学院
    3. 272029 济宁医学院附属医院脊柱外科
  • 收稿日期:2022-06-10 出版日期:2023-02-26
  • 通信作者: 孟纯阳
  • 基金资助:
    国家自然科学基金(81974345)

Research progress on the role of microglia polarization in the development of neuropathic pain

Luyue Bai1, Siqi Zhao1, Sheng Gao2, Tao Yang1, Chunyang Meng3,()   

  1. 1. College of Clinical Medicine, Jining Medical University, Jining 272013, China
    2. Department of Medicine, Qingdao University, Qingdao 266073, China
    3. Department of Spine Surgery, Affiliated Hospital of Jining Medical University, Jining 272029, China
  • Received:2022-06-10 Published:2023-02-26
  • Corresponding author: Chunyang Meng
引用本文:

白鲁岳, 赵思齐, 高升, 杨涛, 孟纯阳. 小胶质细胞极化在神经病理性疼痛发生发展过程中的作用研究进展[J]. 中华诊断学电子杂志, 2023, 11(01): 33-36.

Luyue Bai, Siqi Zhao, Sheng Gao, Tao Yang, Chunyang Meng. Research progress on the role of microglia polarization in the development of neuropathic pain[J]. Chinese Journal of Diagnostics(Electronic Edition), 2023, 11(01): 33-36.

神经病理性疼痛(NP)因病理机制尚不明晰、临床疗效不佳,在医学领域一直以来都是困扰学者们的难题。目前很多研究表明,小胶质细胞的激活以及随之发生的抗炎或促炎反应在NP发生发展过程中发挥着重要作用。此外,小胶质细胞极化可分为促炎的M1型和抗炎的M2型,在对NP的调控过程中发挥着不同的作用。笔者就小胶质细胞的极化与NP之间的关系进行综述,探讨通过调控小胶质细胞的表型进而影响NP的可能性,并寻找相关治疗NP的新思路。

Due to its unclear pathological mechanism and poor clinical efficacy, neuropathic pain (NP) has always been a difficult problem in the medical field. Numerous studies have demonstrated that activation of microglia and its consequent anti-inflammatory or pro-inflammatory responses play an important role in the development of NP. In addition, microglia polarization can be divided into pro-inflammatory M1 type and anti-inflammatory M2 type, which play different roles in the regulation of NP. The author mainly examines the relationship between microglia polarization and NP, explores the potential for controlling the microglia's phenotype to affect NP, and looks for novel therapeutic options.

表1 小胶质细胞极化分型
[1]
杜涛,袁文茜,曹伯旭,等.慢性神经病理性疼痛[J].中国疼痛医学杂志202127(7):481-485.DOI:10.3969/j.issn.1006-9852.2021.07.001.
[2]
周围神经病理性疼痛诊疗中国专家共识[J].中国疼痛医学杂志202026(5):321-328.DOI:10.3969/j.issn.1006-9852.2020.05.001.
[3]
Attal N, Martinez V, Bouhassira D.Potential for increased prevalence of neuropathic pain after the COVID-19 pandemic[J].Pain Rep20216(1):e884.DOI:10.1097/PR9.0000000000000884.
[4]
Colloca L, Ludman T, Bouhassira D,et al.Neuropathic pain[J].Nat Rev Dis Primers2017(3):17002.DOI:10.1038/nrdp.2017.2.
[5]
Inoue K, Tsuda M. Microglia in neuropathic pain:cellular and molecular mechanisms and therapeutic potential[J].Nat Rev Neurosci201819(3):138-152.DOI:10.1038/nrn.2018.2.
[6]
Sarlus H, Heneka MT.Microglia in Alzheimer's disease[J].J Clin Invest2017127(9):3240-3249.DOI:10.1172/JCI90606.
[7]
Orihuela R, McPherson CA, Harry GJ.Microglial M1/M2 polarization and metabolic states[J].Br J Pharmacol2016173(4):649-665.DOI:10.1111/bph.13139.
[8]
Nguyen HM, Grössinger EM, Horiuchi M,et al.Differential Kv1.3,KCa3.1,and Kir2.1 expression in " classically" and " alternatively" activated microglia[J].Glia201765(1):106-121.DOI:10.1002/glia.23078.
[9]
Tang Y, Le W.Differential roles of M1 and M2 microglia in neurodegenerative diseases[J].Mol Neurobiol201653(2):1181-1194.DOI:10.1007/s12035-014-9070-5.
[10]
Colonna M, Butovsky O. Microglia function in the central nervous system during health and neurodegeneration[J].Annu Rev Immunol2017(35):441-468.DOI:10.1146/annurev-immunol-051116-052358.
[11]
Correale J.The role of microglial activation in disease progression[J].Mult Scler201420(10):1288-1295.DOI:10.1177/1352458514533230.
[12]
Mantovani A, Sica A, Sozzani S,et al.The chemokine system in diverse forms of macrophage activation and polarization[J].Trends Immunol200425(12):677-686.DOI:10.1016/j.it.2004.09.015.
[13]
Du RH, Sun HB, Hu ZL,et al.Kir6.1/K-ATP channel modulates microglia phenotypes:implication in Parkinson's disease[J].Cell Death Dis20189(3):404.DOI:10.1038/s41419-018-0437-9.
[14]
Song GJ, Suk K.Pharmacological modulation of functional phenotypes of microglia in neurodegenerative diseases[J].Front Aging Neurosci201(9):139.DOI:10.3389/fnagi.2017.00139.
[15]
Wang X, Jiang Y, Li J,et al.DUSP1 promotes microglial polarization toward M2 phenotype in the medial prefrontal cortex of neuropathic pain rats via inhibition of MAPK pathway[J].ACS Chem Neurosci202112(6):966-978.DOI:10.1021/acschemneuro.0c00567.
[16]
Kong F, Sun K, Zhu J,et al.PD-L1 Improves motor function and alleviates neuropathic pain in male mice after spinal cord injury by inhibiting MAPK pathway[J].Front Immunol2021(12):670646.DOI:10.3389/fimmu.2021.670646.
[17]
Yuan J, Fei Y.Lidocaine ameliorates chronic constriction injury-induced neuropathic pain through regulating M1/M2 microglia polarization[J].Open Med (Wars)202217(1):897-906.DOI:10.1515/med-2022-0480.
[18]
Zhang LQ, Gao SJ, Sun J,et al.DKK3 ameliorates neuropathic pain via inhibiting ASK-1/JNK/p-38-mediated microglia polarization and neuroinflammation[J].J Neuroinflammation202219(1):129.DOI:10.1186/s12974-022-02495-x.
[19]
Rismanbaf A, Afshari K, Ghasemi M,et al.Therapeutic effects of azithromycin on spinal cord injury in male wistar rats:a role for inflammatory pathways[J].J Neurol Surg A Cent Eur Neurosurg202283(5):411-419.DOI:10.1055/s-0041-1735854.
[20]
Xue MT, Sheng WJ, Song X,et al.Atractylenolide III ameliorates spinal cord injury in rats by modulating microglial/macrophage polarization[J].CNS Neurosci Ther202228(7):1059-1071.DOI:10.1111/cns.13839.
[21]
Xu F, Huang J, He Z, et al. Microglial polarization dynamics in dorsal spinal cord in the early stages following chronic sciatic nerve damage[J].Neurosci Lett2016(617):6-13.DOI:10.1016/j.neulet.2016.01.038.
[22]
Kigerl KA, Gensel JC, Ankeny DP, et al. Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord[J].J Neurosci200929(43):13435-13444.DOI:10.1523/JNEUROSCI.3257-09.2009.
[23]
Willemen HL, Huo XJ, Mao-Ying QL,et al.MicroRNA-124 as a novel treatment for persistent hyperalgesia[J].J Neuroinflammation2012(9):143.DOI:10.1186/1742-2094-9-143.
[24]
Yang Z, Xu J, Zhu R, et al. Down-regulation of miRNA-128 contributes to neuropathic pain following spinal cord injury via activation of P38[J].Med Sci Monit2017(23):405-411.DOI:10.12659/msm.898788.
[25]
Zhang Y, Chen Q, Nai Y,et al.Suppression of miR-155 attenuates neuropathic pain by inducing an M1 to M2 switch in microglia[J].Folia Neuropathol202058(1):70-82.DOI:10.5114/fn.2020.94008.
[26]
Chang S, Li X, Zheng Y,et al.Kaempferol exerts a neuroprotective effect to reduce neuropathic pain through TLR4/NF-κB signaling pathway[J].Phytother Res202236(4):1678-1691.DOI:10.1002/ptr.7396.
[27]
程连芝,周家梅,马俊龙,等.延胡索乙素通过抑制p38 MAPK信号通路介导的小胶质细胞活化改善糖尿病大鼠神经病理性疼痛[J].中国中药杂志202247(9):2533-2540.DOI:10.19540/j.cnki.cjcmm.20220119.702.
[28]
Liu C, Sun Q, Xu J,et al.The role of bone morphogenetic protein 4 in microglial polarization in the process of neuropathic pain[J].J Inflamm Res2022(15):2803-2817.DOI:10.2147/JIR.S356531.
[29]
Jiang Y, Wang J, Li H,et al.IL-35 promotes microglial M2 polarization in a rat model of diabetic neuropathic pain[J].Arch Biochem Biophys2020(685):108330.DOI:10.1016/j.abb.2020.108330.
[1] 韩圣瑾, 周正武, 翁云龙, 黄鑫. 碳酸氢钠林格液联合连续性肾脏替代疗法对创伤合并急性肾损伤患者炎症水平及肾功能的影响[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 376-381.
[2] 魏徐, 张鸽, 伍金林. 新生儿脓毒症相关性凝血病的监测和治疗[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 379-386.
[3] 陆宜仙, 张震涛, 夏德萌, 王家林. 巨噬细胞极化在骨质疏松中调控作用及机制的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 538-541.
[4] 王鹏, 肖厚安, 贾赤宇. 不同因素调控巨噬细胞极化在慢性难愈性创面中的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 454-459.
[5] 陈大敏, 曹晓刚, 曹能琦. 肥胖对胃癌患者手术治疗效果的影响研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 651-653.
[6] 贾成朋, 王代宏, 陈华, 孙备. 可切除性胰腺癌预后术前预测模型的建立及应用[J]. 中华普外科手术学杂志(电子版), 2023, 17(05): 566-570.
[7] 伍学成, 李远伟, 袁武雄, 王建松, 石泳中, 卢强, 李卓, 陈佳, 刘哲, 滕伊漓, 高智勇. 炎症介质谱联合降钙素原在尿源性脓毒血症中的诊断价值[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 476-480.
[8] 王可, 范彬, 李多富, 刘奎. 两种疝囊残端处理方法在经腹腹膜前腹股沟疝修补术中的疗效比较[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 692-696.
[9] 许磊, 孙杰, 陈先志, 张家泉, 李旺勇, 冯其柱, 王琦. 血液净化治疗在高血脂性重症胰腺炎中的应用[J]. 中华肝脏外科手术学电子杂志, 2023, 12(04): 464-468.
[10] 邹勇, 顾应江, 丁昊, 杨呈浩, 陈岷辉, 蔡昱. 基于Nrf2/HO-1及NF-κB信号通路探讨葛根素对大鼠脑出血后早期炎症反应及氧化应激反应的影响[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 271-277.
[11] 付强, 秦丽媛, 李全波. 神经病理性疼痛患者血清miR-15a水平及意义分析[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 293-298.
[12] 屈霄, 王靓, 陆萍, 何斌, 孙敏. 外周血炎症因子及肠道菌群特征与活动性溃疡性结肠炎患者病情的相关性分析[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 466-470.
[13] 朱风尚, 舍玲, 丁永年, 杨长青. 警惕炎症性肠病与少见肠道疾病的鉴别诊断[J]. 中华消化病与影像杂志(电子版), 2023, 13(05): 273-276.
[14] 吴蓉菊, 向平超. COPD频繁急性加重表型与炎性因子相关性研究[J]. 中华临床医师杂志(电子版), 2023, 17(9): 939-947.
[15] 刘感哲, 艾芬. MiRNA-210通过抑制HIF-1α的表达改善大鼠血管性认知功能障碍[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 489-494.
阅读次数
全文


摘要