切换至 "中华医学电子期刊资源库"

中华诊断学电子杂志 ›› 2023, Vol. 11 ›› Issue (02) : 77 -81. doi: 10.3877/cma.j.issn.2095-655X.2023.02.002

感染性疾病诊治

主要协同转运蛋白超家族膜转运蛋白与细菌生物膜形成的相关性研究进展
杨锐富1, 周燕斌1,()   
  1. 1. 510080 广州,中山大学附属第一医院呼吸与危重症医学科
  • 收稿日期:2022-03-24 出版日期:2023-05-04
  • 通信作者: 周燕斌
  • 基金资助:
    国家自然科学基金面上项目(81570008); 广东省自然科学基金面上项目(2021A1515010480)

Research progress on the correlation of major facilitator superfamily membrane transporters and bacterial biofilm formation

Ruifu Yang1, Yanbin Zhou1,()   

  1. 1. Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
  • Received:2022-03-24 Published:2023-05-04
  • Corresponding author: Yanbin Zhou
引用本文:

杨锐富, 周燕斌. 主要协同转运蛋白超家族膜转运蛋白与细菌生物膜形成的相关性研究进展[J]. 中华诊断学电子杂志, 2023, 11(02): 77-81.

Ruifu Yang, Yanbin Zhou. Research progress on the correlation of major facilitator superfamily membrane transporters and bacterial biofilm formation[J]. Chinese Journal of Diagnostics(Electronic Edition), 2023, 11(02): 77-81.

细菌生物膜的形成是一个多因素参与、动态有序的过程,可引起多种慢性细菌感染。主要协同转运蛋白超家族(MFS)是目前已知最大的膜转运蛋白超家族之一,同时也是细菌六大外排泵家族之一。目前研究发现,MFS膜转运蛋白与细菌生物膜形成密切相关,前者对细菌生物膜形成的影响主要涉及包括生物膜基质组分在内的多种底物转运、诱导合成以及生物膜形成的代谢过程3个方面。笔者就MFS膜转运蛋白的概念、结构功能、转运机制及其影响细菌生物膜形成的可能机制进行综述,以期为细菌生物膜相关研究提供理论依据。

The dynamic and ordered process of bacterial biofilm production, which involves numerous components, can cause a variety of chronic illnesses. Major facilitator superfamily (MFS), one of the six bacterial efflux pump families, is one of the largest superfamilies of membrane transport proteins. Recent studies have revealed a close connection between the MFS membrane transporters and the formation of bacterial biofilm. The former has the greatest influence on biofilm formation due to three factors: the transport of substrates containing biofilm matrix components, the induction of biofilm matrix component synthesis, and the metabolic process of biofilm formation.In this review, the concept and transport mechanism of MFS membrane transporters, and their possible mechanisms affecting the formation of bacterial biofilm are summarized to provide a theoretical basis for related research on bacterial biofilm.

表1 与细菌生物膜形成有关的MFS膜转运蛋白编码基因
基因/ORF 菌种 可能的转运底物 与生物膜的关系 参考文献
araJ E. coli 阿拉伯糖 未确定,高表达可能促进细胞聚集和生物膜基质形成 [21]
emrA E. coli 抗生素 敲除该基因后,生物膜形成能力增强 [22]
emrB E. coli 抗生素 敲除该基因后,生物膜形成能力增强 [22]
emrD E. coli 阿拉伯糖 敲除该基因后,生物膜形成能力减弱 [2324]
emrK E. coli 胆盐 敲除该基因后,生物膜形成能力减弱 [2324]
emrY E. coli 胆盐 敲除该基因后,生物膜形成能力减弱 [25]
fsr E. coli 膦胺霉素 敲除该基因后,生物膜形成能力减弱 [25]
setB E. coli 葡萄糖和乳糖 未确定,过表达可能促进或抑制生物膜形成 [26]
ydeA E. coli 糖类,如阿拉伯糖 敲除该基因后,生物膜形成能力减弱 [2527]
yihN E. coli 磷酸糖类 与浮游状态相比,被膜状态下该基因表达上调>2倍 [28]
tetA(C) E. coli 镍离子和氨基糖苷类抗生素 过表达后可能促进生物膜形成 [2129]
bfd2 S. aureus 尚未确定 敲除该基因后,生物膜形成能力减弱 [30]
mdeA S. aureus 抗生素和季铵化合物 与浮游状态相比,被膜状态下该基因表达上调4.6倍 [31]
norB S. aureus 溴化十六烷基三甲铵、溴化乙啶、有机酸、喹诺酮类、四苯基鏻 与浮游状态相比,被膜状态下该基因表达上调7.0倍 [31]
norC S. aureus 溴化十六烷基三甲铵、溴化乙啶、喹诺酮类、四苯基鏻 与浮游状态相比,被膜状态下该基因表达上调4.7倍 [31]
proP S. aureus 渗透剂,如甘氨酸甜菜碱和脯氨酸 与浮游状态相比,被膜状态下该基因表达上调4.307倍 [32]
abaF A. baumannii 磷霉素 敲除该基因后,生物膜形成能力减弱 [33]
A1S_1316 A. baumannii 尚未确定 与浮游状态(指数期)相比,被膜状态下该基因表达上调14.40倍 [34]
A1S_1117 A. baumannii 糖类、香草酸盐 仅在被膜状态下表达,在浮游状态下表达受抑制 [34]
pmt A. baumannii 尚未确定 在被膜状态下呈现过表达,且在被膜形成初始阶段最明显(2.79倍) [35]
emrAB S.enterica serovars 新生霉素、脱氧胆酸钠和萘啶酸 敲除该基因后,生物膜形成能力减弱 [2436]
mdfA S.enterica serovars 氯霉素、阿霉素、诺氟沙星和四环素 敲除该基因后,生物膜形成能力减弱 [2436]
PA2114 P. aeruginosa 尚未确定 与浮游状态相比,被膜状态下该基因表达上调>2.5倍 [37]
bcr Proteus mirabilis 尚未确定 抑制该基因表达后,生物膜形成能力减弱 [38]
[1]
Flemming HC, Wingender J. The biofilm matrix[J].Nat Rev Microbiol20108(9):623-633.DOI:10.1038/nrmicro2415.
[2]
Aliramezani ADouraghi MHajihasani A,et al.Clonal relatedness and biofilm formation of OXA-23-producing carbapenem resistant Acinetobacter baumannii isolates from hospital environment[J].Microb Pathog2016(99):204-208.DOI:10.1016/j.micpath.2016.08.034.
[3]
Reddy VS, Shlykov MA, Castillo R, et al. The major facilitator superfamily (MFS) revisited[J].FEBS J2012279(11):2022-2035.DOI:10.1111/j.1742-4658.2012.08588.x.
[4]
Pasqua MGrossi MZennaro A,et al.The varied role of efflux pumps of the MFS family in the interplay of Bacteria with animal and plant cells[J].Microorganisms20197(9):285.DOI:10.3390/microorganisms7090285.
[5]
Ernst MRobertson JL.The role of the membrane in transporter folding and activity[J].J Mol Biol2021433(16):167103.DOI:10.1016/j.jmb.2021.167103.
[6]
Jeckelmann JMErni B.Carbohydrate transport by group translocation:the bacterial phosphoenolpyruvate:sugar phosphotransferase system[J].Subcell Biochem2019(92):223-274.DOI:10.1007/978-3-030-18768-2_8.
[7]
Bosshart PDFotiadis D.Secondary active transporters[J].Subcell Biochem2019(92):275-299.DOI:10.1007/978-3-030-18768-2_9.
[8]
Marger MD, Saier MH Jr. A major superfamily of transmembrane facilitators that catalyse uniport,symport and antiport[J].Trends Biochem Sci199318(1):13-20.DOI:10.1016/0968-0004(93)90081-w.
[9]
Drew DNorth RANagarathinam K,et al.Structures and general transport mechanisms by the major facilitator superfamily(MFS)[J].Chem Rev2021121(9):5289-5335.DOI:10.1021/acs.chemrev.0c00983.
[10]
李纯,孙春玉,陈静,等.主要协同转运蛋白超家族的研究进展[J].生物技术通报201834(8):43-49.DOI:10.13560/j.cnki.biotech.bull.1985.2018-0069.
[11]
Madej MGDang SYan N,et al.Evolutionary mix-and-match with MFS transporters[J].Proc Natl Acad Sci U S A2013110(15):5870-5874.DOI:10.1073/pnas.1303538110.
[12]
Boudker OVerdon G.Structural perspectives on secondary active transporters[J].Trends Pharmacol Sci201031(9):418-426.DOI:10.1016/j.tips.2010.06.004.
[13]
Yan N.Structural biology of the major facilitator superfamily transporters[J].Annu Rev Biophys2015(44):257-283.DOI:10.1146/annurev-biophys-060414-033901.
[14]
Abramson JSmirnova IKasho V,et al.Structure and mechanism of the lactose permease of Escherichia coli[J].Science2003301(5633):610-615.DOI:10.1126/science.1088196.
[15]
Huang YLemieux MJSong J,et al.Structure and mechanism of the glycerol-3-phosphate transporter from Escherichia coli[J].Science2003301(5633):616-620.DOI:10.1126/science.1087619.
[16]
Sun LZeng XYan C,et al.Crystal structure of a bacterial homologue of glucose transporters GLUT1-4[J].Nature2012490(7420):361-366.DOI:10.1038/nature11524.
[17]
Deng DXu CSun P,et al.Crystal structure of the human glucose transporter GLUT1[J].Nature2014510(7503):121-125.DOI:10.1038/nature13306.
[18]
Pao SSPaulsen ITSaier MH Jr.Major facilitator superfamily[J].Microbiol Mol Biol Rev199862(1):1-34.DOI:10.1128/MMBR.62.1.1-34.1998.
[19]
Smirnova INKasho VKaback HR.Protonation and sugar binding to LacY[J].Proc Natl Acad Sci U S A2008105(26):8896-8901.DOI:10.1073/pnas.0803577105.
[20]
Garcia íR, de Oliveira Garcia FA, Pereira PS, et al. Microbial resistance:the role of efflux pump superfamilies and their respective substrates[J].Life Sci2022(295):120391.DOI:10.1016/j.lfs.2022.120391.
[21]
May TIto AOkabe S.Induction of multidrug resistance mechanism in Escherichia coli biofilms by interplay between tetracycline and ampicillin resistance genes[J].Antimicrob Agents Chemother200953(11):4628-4639.DOI:10.1128/AAC.00454-09.
[22]
Bay DCStremick CASlipski CJ,et al.Secondary multidrug efflux pump mutants alter Escherichia coli biofilm growth in the presence of cationic antimicrobial compounds[J].Res Microbiol2017168(3):208-221.DOI:10.1016/j.resmic.2016.11.003.
[23]
Matsumura KFurukawa SOgihara H,et al.Roles of multidrug efflux pumps on the biofilm formation of Escherichia coli K-12[J].Biocontrol Sci201116(2):69-72.DOI:10.4265/bio.16.69.
[24]
Sun JDeng ZYan A.Bacterial multidrug efflux pumps:mechanisms,physiology and pharmacological exploitations[J].Biochem Biophys Res Commun2014453(2):254-267.DOI:10.1016/j.bbrc.2014.05.090.
[25]
Junker LMPeters JEHay AG.Global analysis of candidate genes important for fitness in a competitive biofilm using DNA-array-based transposon mapping[J].Microbiology (Reading)2006152(Pt 8):2233-2245.DOI:10.1099/mic.0.28767-0.
[26]
Kvist MHancock VKlemm P.Inactivation of efflux pumps abolishes bacterial biofilm formation[J].Appl Environ Microbiol200874(23):7376-7382.DOI:10.1128/AEM.01310-08.
[27]
Koita KRao CV.Identification and analysis of the putative pentose sugar efflux transporters in Escherichia coli[J].PLoS One20127(8):e43700.DOI:10.1371/journal.pone.0043700.
[28]
Beloin CValle JLatour-Lambert P,et al.Global impact of mature biofilm lifestyle on Escherichia coli K-12 gene expression[J].Mol Microbiol200451(3):659-674.DOI:10.1046/j.1365-2958.2003.03865.x.
[29]
Podolsky TFong STLee BT.Direct selection of tetracycline-sensitive Escherichia coli cells using nickel salts[J].Plasmid199636(2):112-115.DOI:10.1006/plas.1996.0038.
[30]
Tu Quoc PHGenevaux PPajunen M,et al.Isolation and characterization of biofilm formation-defective mutants of Staphylococcus aureus[J].Infect Immun200775(3):1079-1088.DOI:10.1128/IAI.01143-06.
[31]
He XAhn J.Differential gene expression in planktonic and biofilm cells of multiple antibiotic-resistant Salmonella Typhimurium and Staphylococcus aureus[J].FEMS Microbiol Lett2011325(2):180-188.DOI:10.1111/j.1574-6968.2011.02429.x.
[32]
Resch ARosenstein RNerz C,et al.Differential gene expression profiling of Staphylococcus aureus cultivated under biofilm and planktonic conditions[J].Appl Environ Microbiol200571(5):2663-2676.DOI:10.1128/AEM.71.5.2663-2676.2005.
[33]
Sharma ASharma RBhattacharyya T,et al.Fosfomycin resistance in Acinetobacter baumannii is mediated by efflux through a major facilitator superfamily (MFS) transporter-AbaF[J].J Antimicrob Chemother201772(1):68-74.DOI:10.1093/jac/dkw382.
[34]
Rumbo-Feal SGómez MJGayoso C,et al.Whole transcriptome analysis of Acinetobacter baumannii assessed by RNA-sequencing reveals different mRNA expression profiles in biofilm compared to planktonic cells[J].PLoS One20138(8):e72968.DOI:10.1371/journal.pone.0072968.
[35]
Sahu PKIyer PSGaikwad MB,et al.An MFS transporter-like ORF from MDR Acinetobacter baumannii AIIMS 7 is associated with adherence and biofilm formation on Biotic/Abiotic surface[J].Int J Microbiol2012(2012):490647.DOI:10.1155/2012/490647.
[36]
Baugh SEkanayaka ASPiddock LJ,et al.Loss of or inhibition of all multidrug resistance efflux pumps of Salmonella enterica serovar Typhimurium results in impaired ability to form a biofilm[J].J Antimicrob Chemother201267(10):2409-2417.DOI:10.1093/jac/dks228.
[37]
Waite RDPapakonstantinopoulou ALittler E,et al.Transcriptome analysis of Pseudomonas aeruginosa growth:comparison of gene expression in planktonic cultures and developing and mature biofilms[J].J Bacteriol2005187(18):6571-6576.DOI:10.1128/JB.187.18.6571-6576.2005.
[38]
Holling NLednor DTsang S,et al.Elucidating the genetic basis of crystalline biofilm formation in Proteus mirabilis[J].Infect Immun201482(4):1616-1626.DOI:10.1128/IAI.01652-13.
[39]
Vasicek EMO'Neal LParsek MR,et al.L-Arabinose transport and metabolism in salmonella influences biofilm formation[J].Front Cell Infect Microbiol2021(11):698146.DOI:10.3389/fcimb.2021.698146.
[40]
Alav ISutton JMRahman KM.Role of bacterial efflux pumps in biofilm formation[J].J Antimicrob Chemother201873(8):2003-2020.DOI:10.1093/jac/dky042.
[41]
Zimmermann SKlinger-Strobel MBohnert JA,et al.Clinically approved drugs inhibit the staphylococcus aureus multidrug NorA efflux pump and reduce biofilm formation[J].Front Microbiol2019(10):2762.DOI:10.3389/fmicb.2019.02762.
[42]
Mahey NTambat RVerma DK,et al.Antifungal azoles as tetracycline resistance modifiers in staphylococcus aureus[J].Appl Environ Microbiol202187(15):e0015521.DOI:10.1128/AEM.00155-21.
[43]
Yun EJCho YHan NR,et al.Increased production of colanic acid by an engineered escherichia coli strain,mediated by genetic and environmental perturbations[J].Appl Biochem Biotechnol2021193(12):4083-4096.DOI:10.1007/s12010-021-03671-0.
[44]
Pisithkul TSchroeder JWTrujillo EA,et al.Metabolic remodeling during biofilm development of bacillus subtilis[J].mBio201910(3):e00623-19.DOI:10.1128/mBio.00623-19.
[45]
Lu HQue YWu X,et al.Metabolomics deciphered metabolic reprogramming required for biofilm formation[J].Sci Rep20199(1):13160.DOI:10.1038/s41598-019-49603-1.
[46]
Costa SSViveiros MAmaral L,et al.Multidrug efflux pumps in staphylococcus aureus:an update[J].Open Microbiol J2013(7):59-71.DOI:10.2174/1874285801307010059.
[47]
Trotonda MPTamber SMemmi G,et al.MgrA represses biofilm formation in Staphylococcus aureus[J].Infect Immun200876(12):5645-5654.DOI:10.1128/IAI.00735-08.
[48]
Yang RLai BLiao K,et al.Overexpression of BIT33_RS14560 enhances the biofilm formation and virulence of Acinetobacter baumannii[J].Front Microbiol2022(13):867770.DOI:10.3389/fmicb.2022.867770.
[1] 张巧梅, 孙小平, 李冠胜, 邓扬嘉. 针灸对大鼠呼吸机相关性肺炎中性粒细胞归巢及胞外诱捕网的影响[J]. 中华危重症医学杂志(电子版), 2023, 16(04): 265-271.
[2] 张晓燕, 肖东琼, 高沪, 陈琳, 唐发娟, 李熙鸿. 转录因子12过表达对脓毒症相关性脑病大鼠大脑皮质的保护作用及其机制[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 540-549.
[3] 魏徐, 张鸽, 伍金林. 新生儿脓毒症相关性凝血病的监测和治疗[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 379-386.
[4] 崔占斌, 乔军利, 张丽丽, 韩明强. 尿碘水平与甲状腺乳头状癌患者术后复发危险度分层的相关性[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 615-618.
[5] 高静, 严学倩, 及月茹, 郝淼旺, 刘苍春. 胃癌患者以慢性贫血为首发表现的高危因素Logistic分析[J]. 中华普外科手术学杂志(电子版), 2023, 17(05): 534-537.
[6] 李晓晖, 上官昌盛, 向英, 裴芝皆, 车俊志, 谢飞. 3D腹腔镜袖状胃切除术后机体能量代谢与多囊卵巢综合征患者性激素水平关系[J]. 中华普外科手术学杂志(电子版), 2023, 17(05): 538-541.
[7] 朱伟权, 叶善平, 唐和春, 刘东宁, 鞠后琼, 仲崇晗, 黄智翔, 李太原. 机器人辅助直肠癌NOSES术后细菌学及肿瘤学结果的前瞻性研究[J]. 中华结直肠疾病电子杂志, 2023, 12(04): 282-287.
[8] 潘春江, 李科, 李新楼, 杨博, 任雪玲. 高龄老人骨转换代谢标志物与肾功能的相关性研究[J]. 中华肾病研究电子杂志, 2023, 12(05): 260-264.
[9] 张瑞琪, 张丽娟, 孙斌. 甲状腺相关性眼病表观遗传学的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 226-230.
[10] 张郁妍, 胡滨, 张伟红, 徐楣, 朱慧, 羊馨玥, 刘海玲. 妊娠中期心血管超声参数与肝功能的相关性及对不良妊娠结局的预测价值[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 499-504.
[11] 魏红涛, 普布仓决, 格桑央宗, 黎燕, 益西旺扎, 李鹏. 拉萨地区上消化道溃疡患者幽门螺杆菌感染及治疗分析[J]. 中华临床医师杂志(电子版), 2023, 17(06): 662-665.
[12] 杨艳丽, 陈昱, 赵若辰, 杜伟, 马海娟, 许珂, 张莉芸. 系统性红斑狼疮合并血流感染的危险因素及细菌学分析[J]. 中华临床医师杂志(电子版), 2023, 17(06): 694-699.
[13] 陈捷, 白易, 刘金波, 刘欢, 赵娜, 赵红薇, 王宏宇. 中老年人群中性粒细胞和高密度脂蛋白比值与下肢动脉疾病的相关性[J]. 中华临床医师杂志(电子版), 2023, 17(04): 402-408.
[14] 王晓苏, 戴铮, 朱嘉嘉, 李启超, 张李涛. BacT/ALERT两种血培养系统8种血培养瓶对模拟菌血症标本检测能力的对比研究[J]. 中华临床实验室管理电子杂志, 2023, 11(04): 207-213.
[15] 刘平娟, 罗科城, 吴家茵, 廖康, 胡雯雯, 陈怡丽. 神经内科重症监护室患者肠道耐碳青霉烯类肠杆菌目细菌主动筛查研究[J]. 中华临床实验室管理电子杂志, 2023, 11(04): 235-240.
阅读次数
全文


摘要