切换至 "中华医学电子期刊资源库"

中华诊断学电子杂志 ›› 2023, Vol. 11 ›› Issue (02) : 92 -96. doi: 10.3877/cma.j.issn.2095-655X.2023.02.005

儿科疾病诊治

CD11b基因rs4597342位点多态性与川崎病的相关性研究
张娟1, 纪青1, 胡国宏1, 谭成1, 王双双1, 易秀英1,()   
  1. 1. 412000 株洲市中心医院儿科
  • 收稿日期:2022-10-20 出版日期:2023-05-04
  • 通信作者: 易秀英
  • 基金资助:
    株州市科技计划2020社会发展成果转化专项(2020-007)

Correlation between rs4597342 polymorphism of CD11b gene and Kawasaki disease

Juan Zhang1, Qing Ji1, Guohong Hu1, Cheng Tan1, Shuangshuang Wang1, Xiuying Yi1,()   

  1. 1. Department of Pediatrics, Zhuzhou Central Hospital, Zhuzhou 412000, China
  • Received:2022-10-20 Published:2023-05-04
  • Corresponding author: Xiuying Yi
引用本文:

张娟, 纪青, 胡国宏, 谭成, 王双双, 易秀英. CD11b基因rs4597342位点多态性与川崎病的相关性研究[J]. 中华诊断学电子杂志, 2023, 11(02): 92-96.

Juan Zhang, Qing Ji, Guohong Hu, Cheng Tan, Shuangshuang Wang, Xiuying Yi. Correlation between rs4597342 polymorphism of CD11b gene and Kawasaki disease[J]. Chinese Journal of Diagnostics(Electronic Edition), 2023, 11(02): 92-96.

目的

探讨CD11b基因rs4597342位点多态性与川崎病(KD)及其冠状动脉损伤(CAL)的关系。

方法

选择株洲市中心医院儿科2019年1月1日至2021年12月30日136例KD患儿(KD组)及同期74例健康儿童(对照组)。KD患儿根据有无CAL分为KD合并冠脉损伤组(KD-CAL组,n=25)和无冠脉损伤组(KD-NCAL组,n=111)。基于限制性片段长度多态性聚合酶链反应(PCR-RFLP)技术结合Sanger测序法检测KD组患儿与对照组儿童的CD11b基因rs4597342位点多态性,χ2检验比较KD组和对照组,及KD-CAL与KD-NCAL组样本间rs4597342基因型及等位基因频率分布差异。

结果

KD组CD11b基因rs4597342位点TT、TC、CC基因型分布频率分别为5.89%、47.79%、46.32%,T、C等位基因频率分别为29.78%,70.22%;健康组CD11b基因rs4597342位点TT、TC、CC基因型分布频率分别为1.35%、50.00%、48.65%,T、C等位基因频率分别为26.35%、73.65%。两组间基因型及等位基因频率分布比较,均差异无统计学意义(χ2=2.40,0.55;均P>0.05)。KD-CAL组CD11b基因rs4597342位点TT、TC、CC基因型分布频率分别为4.00%,48.00%,48.00%, T、C等位基因频率分别为28.00%,72.00%; KD-NCAL组CD11b基因rs4597342位点TT、TC、CC基因型分布频率分别为6.31%,47.75%,45.94%;T、C等位基因频率分别为30.18%,69.82%,两组间比较,均差异无统计学意义(χ2=0.20,0.09;均P>0.05)。

结论

CD11b基因rs4597342位点多态性与KD及其CAL的发生无明显相关性。

Objective

To investigate the correlation between the rs4597342 polymorphism of the CD11b gene and Kawasaki disease(KD) and coronary artery lesions(CAL).

Methods

From January 1, 2019, to December 30, 2021, a total of 136 children with KD and 74 healthy children were selected from the Pediatrics Department of Zhuzhou Central Hospital. KD children were divided into KD with CAL group(KD-CAL group, n=25) and without CAL group (KD-NCAL group, n=111). The rs4597342 polymorphism of CD11b gene was detected by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) combined with Sanger sequencing method. The genotype and allele frequency distribution of rs4597342 between KD and control groups, as well as between the KD-CAL and KD-NCAL groups were compared by using the χ2 test.

Results

The TT, TC, and CC genotype distribution frequencies at rs4597342 of the CD11b gene in the KD group were 5.89%, 47.78%, and 46.32%, respectively, and the T and C allele frequencies were 29.78%, 70.22%, respectively. The TT, TC, CC genotype distribution frequencies at rs4597342 of the CD11b gene in the healthy group were 1.35%, 50.00%, 48.65%, respectively, and the T and C allele frequencies were 26.35%, 73.65%, respectively. There were no significant differences in genotype and allele frequency distribution between the two groups (χ2=2.40, 0.55, all P>0.05). The TT, TC, and CC genotype distribution frequencies at rs4597342 of CD11b gene in KD-CAL group were 4.00%, 48.00% and 48.00%, respectively, and the frequencies of T and C alleles were 28.00%, 72.00%, respectively. TT, TC, and CC genotype distribution frequencies at rs4597342 of CD11b gene in KD-NCAL group were 6.31%, 47.75% and 45.94%, respectively, and T and C allele frequencies were 30.18%, 69.82%, respectively. There were no significant differences between the two groups (χ2=0.20, 0.09, all P>0.05).

Conclusions

The rs4597342 polymorphism of CD11b gene and KD or its complication CAL are not significantly correlated.

图1 KD患儿CD11b基因rs4597342位点PCR产物凝胶电泳图注:M为DNA Marker;1~3为CD11b基因rs4597342位点PCR产物,扩增长度273bp
图2 CD11b基因rs4597342位点Sanger测序图注:a图为TC杂合子基因型;b图为TT纯合子基因型;c图为CC纯合子基因型
表1 川崎病组与健康对照组CD11b rs4597342位点基因型及等位基因频率分布比较(例,%)
表2 KD-CAL组与KD-NCAL组CD11b rs4597342位点基因型及等位基因频率分布比较(例,%)
[1]
张新艳,杨婷婷,何婷,等.2012至2016年单中心川崎病流行病学及临床特征研究[J].中国循证儿科杂志201813(6):427-433.DOI:10.3969/j.issn.1673-5501.2018.06.006.
[2]
Schmid MCKhan SQKaneda MM,et al.Integrin CD11b activation drives anti-tumor innate immunity[J].Nat Commun20189(1):5379.DOI:10.1038/s41467-018-07387-4.
[3]
Avery JTJimenez RVBlake JL,et al.Mice expressing the variant rs1143679 allele of ITGAM (CD11b) show impaired DC-mediated T cell proliferation[J].Mamm Genome201930(9-10):245-259.DOI:10.1007/s00335-019-09819-y.
[4]
Ramírez-Bello JSun CValencia-Pacheco G,et al.ITGAM is a risk factor to systemic lupus erythematosus and possibly a protection factor to rheumatoid arthritis in patients from Mexico[J].PLoS One201914(11):e0224543.DOI:10.1371/journal.pone.0224543.
[5]
Khan SQKhan IGupta V.CD11b activity modulates pathogenesis of lupus nephritis[J].Front Med (Lausanne)2018(5):52.DOI:10.3389/fmed.2018.00052.
[6]
Heidari B, Amin R, Kashef S, et al. Expression of CD11b as an adhesion molecule on neutrophils in children with Kawasaki disease[J].Iran J Allergy Asthma Immunol201413(4):265-270.
[7]
江载芳,申昆玲,沈颖,等.诸福棠实用儿科学[M]8版.北京:人民卫生出版社,2015:778-789.
[8]
McCrindle BWRowley AHNewburger JW,et al.Diagnosis,treatment,and long-term management of Kawasaki disease:a scientific statement for health professionals from the American Heart Association[J].Circulation2017135(17): e927-e999.DOI:10.1161/CIR.0000000000000484.
[9]
Rife EGedalia A.Kawasaki disease:an update[J].Curr Rheumatol Rep202022(10):75.DOI:10.1007/s11926-020-00941-4.
[10]
Stevanin MBusso NChobaz V,et al.CD11b regulates the Treg/Th17 balance in murine arthritis via IL-6[J].Eur J Immunol201747(4):637-645.DOI:10.1002/eji.201646565.
[11]
Liew PXKubes P.The neutrophil's role during health and disease[J].Physiol Rev201999(2):1223-1248.DOI:10.1152/physrev.00012.2018.
[12]
胡静,钱炜,李红,等.川崎病急性期中性粒细胞功能的活化及与冠脉脉损伤的关系[J].实用医学杂志201733(19):3328-3329.DOI:10.3969/j.issn.1006-5725.2017.19.047.
[13]
Chen YBHua YZhang CY,et al.Neutrophil-to-lymphocyte ratio predicts intravenous immunoglobulin-resistance in infants under 12-months old with Kawasaki disease[J].Front Pediatr2019(7):81.DOI:10.3389/fped.2019.00081.
[14]
Avery JTJimenez RVBlake JL, et al.Mice expressing the variant rs1143679 allele of ITGAM (CD11b) show impaired DC-mediated T cell proliferation[J].Mamm Genome201930(9-10):245-259.DOI:10.1007/s00335-019-09819-y.
[15]
温鹏强,王国兵,梅洁花,等.急性期川崎病患儿粒细胞样髓源抑制细胞改变及意义初探[J].中华微生物学和免疫学杂志202242(7):540-548.DOI:10.3760/cma.j.cn112309-20211009-00334.
[16]
Kobayashi TKimura HOkada Y,et al. Increased CD11b expression on polymorphonuclear leucocytes and cytokine profiles in patients with Kawasaki disease[J].Clin Exp Immunol2007148(1):112-118.DOI:10.1111/j.1365-2249.2007.03326.x.
[17]
Sato SKawashima HKashiwagi Y,et al. Inflammatory cytokines as predictors of resistance to intravenous immunoglobulin therapy in Kawasaki disease patients[J].Int J Rheum Dis201316(2):168-172.DOI:10.1111/1756-185X.12082.
[18]
Zhu XLiu XLiu Y,et al. Uncovering the potential differentially expressed miRNAs and mRNAs in ischemic stroke based on integrated analysis in the gene expression omnibus database[J].Eur Neurol202083(4):404-414.DOI:10.1159/000507364.
[19]
Faridi MHKhan SQZhao W,et,al.CD11b activation suppresses TLR-dependent inflammation and autoimmunity in systemic lupus erythematosus[J].J Clin Invest2017127(4):1271-1283.DOI:10.1172/JCI88442.
[20]
Ding CMa YChen X,et al.Integrin CD11b negatively regulates BCR signalling to maintain autoreactive B cell tolerance[J].Nat Commun2013(4):2813.DOI:10.1038/ncomms3813.
[21]
Hruska PKuruczova DVasku V,et al.MiR-21 binding site SNP within ITGAM associated with psoriasis susceptibility in women[J].PLoS One201914(6):e0218323.DOI:10.1371/journal.pone.0218323.
[1] 林昌盛, 战军, 肖雪. 上皮性卵巢癌患者诊疗中基因检测及分子靶向药物治疗[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 505-510.
[2] 罗丹, 孔为民, 陈姝宁, 赵小玲, 谢云凯. 子宫内膜异位症患者在位及异位内膜上皮细胞-间充质转化相关生物标志物的变化[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 530-539.
[3] 陈甜甜, 王晓东, 余海燕. 双胎妊娠合并Gitelman综合征孕妇的妊娠结局及文献复习[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 559-568.
[4] 李维, 莫俊俏. 儿童呼吸道耐药流感嗜血杆菌基因型鉴定及耐药分析对抗菌药物治疗选择的意义[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(05): 315-323.
[5] 王得晨, 杨康, 杨自杰, 归明彬, 屈莲平, 张小凤, 高峰. 结直肠癌微卫星稳定状态和程序性死亡、吲哚胺2,3-双加氧酶关系的研究进展[J]. 中华普通外科学文献(电子版), 2023, 17(06): 462-465.
[6] 黄威, 刘启, 陈流华, 滕茶香, 区喆建, 刘韩笑, 陈健聪, 张昆松. 新定义的可预测肝癌预后的焦亡相关lncRNA模型[J]. 中华普通外科学文献(电子版), 2023, 17(05): 357-365.
[7] 袁育韬, 邢金琳, 谢克飞, 殷凯. CT征象及BRAFV600E基因突变与甲状腺乳头状癌中央区淋巴结转移的相关性[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 611-614.
[8] 樊丽超, 郭瑾瑛, 陈鑫. 野生型RET与RET/PTC融合基因检测对甲状腺乳头状癌中央区淋巴结清扫的指导意义[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 631-635.
[9] 彭雨诗, 苗芸, 严紫嫣. 宏基因组高通量测序诊断肾移植术后华支睾吸虫感染一例[J]. 中华移植杂志(电子版), 2023, 17(05): 297-299.
[10] 刘恒, 侯宇川. 膀胱癌新型灌注药物的研究进展[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 445-451.
[11] 许丁伟, 马江云, 李新成, 黄洁. Alagille综合征疑诊为先天性胆道闭锁一例并文献复习[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 681-687.
[12] 陈安, 冯娟, 杨振宇, 杜锡林, 柏强善, 阴继凯, 臧莉, 鲁建国. 基于生物信息学分析CCN4在肝细胞癌中表达及其临床意义[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 702-707.
[13] 王飞飞, 王光林, 孟泽松, 李保坤, 曹龙飞, 张娟, 周超熙, 丁源一, 王贵英. 敲低IMPDH1对结肠癌SW480、HT29细胞生物功能的影响[J]. 中华临床医师杂志(电子版), 2023, 17(08): 884-890.
[14] 高红琴, 陈晨, 陆瑞科, 王小雨, 张敏, 李少华, 郝梨岚, 黄新程, 关凌耀, 张韵红. 外阴阴道假丝酵母菌病对女性阴道-宫颈菌群的影响研究[J]. 中华临床医师杂志(电子版), 2023, 17(06): 720-725.
[15] 张许平, 刘佳成, 张舸, 杜艳姣, 李韶, 商丹丹, 王浩, 李艳, 段智慧. CYP2C19基因多态性联合血栓弹力图指导大动脉粥样硬化型非致残性缺血性脑血管事件患者抗血小板治疗的效果[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 477-481.
阅读次数
全文


摘要