切换至 "中华医学电子期刊资源库"

中华诊断学电子杂志 ›› 2023, Vol. 11 ›› Issue (04) : 276 -282. doi: 10.3877/cma.j.issn.2095-655X.2023.04.012

综述

Apelin/APJ系统对帕金森病模型的神经保护作用及机制研究进展
郭如烨, 孟黎明, 陈楠, 宋玉莹, 尹海燕, 郭岩()   
  1. 272013 济宁医学院临床医学院
    272067 济宁医学院基础医学院
  • 收稿日期:2022-09-02 出版日期:2023-11-26
  • 通信作者: 郭岩
  • 基金资助:
    国家自然科学基金(82000979); 济宁医学院教师科研扶持基金(JYFC2019KJ001); 济宁医学院大学生创新创业训练计划项目(cx2020008)

Research status on the neuroprotective efficacy and mechanism of Apelin/APJ system in Parkinson disease model

Ruye Guo, Liming Meng, Nan Chen, Yuying Song, Haiyan Yin, Yan Guo()   

  1. College of Clinical Medicine, Jining Medical University, Jining 272013, China
    Department of Basic Medicine, Jining Medical University, Jining 272067, China
  • Received:2022-09-02 Published:2023-11-26
  • Corresponding author: Yan Guo
引用本文:

郭如烨, 孟黎明, 陈楠, 宋玉莹, 尹海燕, 郭岩. Apelin/APJ系统对帕金森病模型的神经保护作用及机制研究进展[J]. 中华诊断学电子杂志, 2023, 11(04): 276-282.

Ruye Guo, Liming Meng, Nan Chen, Yuying Song, Haiyan Yin, Yan Guo. Research status on the neuroprotective efficacy and mechanism of Apelin/APJ system in Parkinson disease model[J]. Chinese Journal of Diagnostics(Electronic Edition), 2023, 11(04): 276-282.

目前,帕金森病(PD)的发病机制仍不明确,也尚未有针对PD缓解的有效策略。越来越多的研究表明,自噬失调、线粒体损伤、内质网应激、氧化应激和过度神经炎症之间的复杂相互作用是PD发病机制的基础。Apelin是一种内源性神经肽,作为孤儿G蛋白偶联受体APJ的配体,可能通过抑制细胞凋亡和多巴胺能神经元丢失,增强自噬和抗氧化,抑制内质网应激及抑制过度神经炎症,起到神经保护作用,主要涉及PI3K/Akt/mTOR、ERK1/2和IRE1α/XBP1/CHOP等信号通路。笔者主要对Apelin/APJ轴在PD中的神经保护作用及机制研究进行综述。

The pathogenesis of Parkinson′s disease (PD) is still unknown. There is still no effective disease-modifying strategy for PD, which is mostly managed symptomatically. A growing amount of preclinical evidence suggests the pathogenesis of PD is driven by a complex interaction of autophagy dysregulation, mitochondrial dysfunction, endoplasmic reticulum stress, oxidative stress, and excessive neuroinflammation. Emerging preclinical evidence suggests that Apelin, an endogenous neuropeptide that acts as a ligand of the orphan G protein-coupled receptor APJ, may play an important neuroprotective role in the pathogenesis of PD by inhibiting apoptosis and dopaminergic neuronal loss, enhancing autophagy and antioxidant effects suppressing, endoplasmic reticulum stress, and preventing excessive neuroinflammation, which mainly involves. PI3K/Akt/mTOR, ERK1/2, and IRE1/XBP1/CHOP and other signaling pathways involved. Given the growing preclinical evidence on the role of the Apelin/APJ axis in PD pathogenesis and the lack of a comprehensive review, we discuss the emerging role of the Apelin/APJ axis in PD pathophysiology and its great potential as a future therapeutic target in this article.

图1 Apelin/APJ通过Gαi信号传导通路在PD发病机制中的作用注:Apelin与其G蛋白偶联受体APJ结合,通过Gαi,导致PI3K/Akt和PKC/ERK 1/2通路的激活,参与细胞凋亡、神经炎症和氧化应激的调节。PI3K为磷酸肌醇-3-激酶;Akt为蛋白激酶B;mTOR为哺乳动物雷帕霉素靶蛋白;PKC为蛋白激酶C;MEK为促分裂原活化蛋白激酶;ERK 1/2为细胞外信号调节激酶
图2 Apelin/APJ信号通过Gαq信号转导通路在PD发病机制中的作用注:Apelin与其G蛋白偶联受体APJ结合,通过Gαq,激活AMPK/mTOR/ULK1信号通路增强自噬;激活AMPK/GSK-3β/Nrf2通路发挥抗氧化作用;通过调节AMPK/TXNIP/NLRP3信号通路抑制神经炎症;通过下调IRE1α/XBP1/CHOP信号通路抑制内质网应激。AMPK为腺苷酸活化蛋白激酶;GSK-3β为糖原合成酶激酶3β;Nrf2为核转录因子红系2相关因子2;TXNIP为硫氧还蛋白互作蛋白;NLRP3为NOD样受体热蛋白结构域相关蛋白3;IRE 1α为肌醇酶1α;XBP1 X为盒结合蛋白1;CHOP为C/EBP同源蛋白;mTOR为哺乳动物雷帕霉素靶蛋白;ULK1为动物自噬启动蛋白
表1 在不同的帕金森病模型中部分Apelin亚型的神经保护作用
序号 Apelin亚型 PD模型 相关通路及作用 参考文献
1 Apelin-13 体外模型(6-OHDA处理的SH-SY5Y细胞) 1.与APJ相互作用以激活PI3K信号传导,抑制神经毒性和细胞凋亡
2.抑制caspase-3激活、细胞色素c释放,保持线粒体膜电位
3.减少ROS产生
14
2 Apelin-13 体外模型(鱼藤酮处理的SH-SY5Y细胞) 1.通过上调AMPK/mTOR/ULK1信号通路激活自噬以发挥神经保护作用
2.增加LC3B-Ⅱ/LC3B-Ⅰ比例、降低p62和α-突触核蛋白水平
12
3 Apelin-13 体内模型(MPTP处理的小鼠) 1.增强与LC3B-Ⅱ增加相关的自噬并减少p62
2.通过抑制ERS保护多巴胺能神经元细胞(减少GRP78,下调SNpc中的IRE 1α/XBP1/CHOP信号通路)
43
4 Apelin-36 体外模型(MPP+处理的SH-SY5Y细胞) 1.通过调节PI3K/Akt/mTOR信号通路抑制细胞凋亡
2.通过增加LC3B-Ⅱ/LC3B-Ⅰ比例诱导自噬,通过PI3K/Akt/mTOR轴降低p62表达
3.降低α-突触核蛋白表达
4.通过抑制ERS增加酪氨酸羟化酶表达介导的细胞凋亡
5.减轻ERS诱导的神经元损失,抑制ERS,减少GRP78、CHOP、裂解的caspase-12
20
5 Apelin-36 体内外模型 1.抑制SNpc中的ERS,减少CHOP、GRP78、多巴胺能神经元中裂解的caspase-12
2.调节氧化应激,自噬和细胞凋亡
44
6 Apelin-36 体内模型(MPTP处理的小鼠) 1.抑制ASK1/JNK/caspase-3凋亡通路
2.促进自噬,增加LC3B-Ⅱ/LC3B-Ⅰ比例,降低p62
3.改善包括SOD和GSH在内的抗氧化细胞机制
4.降低丙二醛的含量
5.降低小鼠SNpc和STR中的诱生型一氧化氮合酶蛋白和mRNA表达
21
[1]
Raza C, Anjum R, Shakeel N.Parkinson′s disease:mechanisms,translational models and management strategies[J].Life Sci2019(226):77-90.DOI:10.1016/j.lfs.2019.03.057.
[2]
Simon DK, Tanner CM, Brundin P.Parkinson disease epidemiology,pathology,genetics,and pathophysiology[J].Clin Geriatr Med202036(1):1-12.DOI:10.1016/j.cger.2019.08.002.
[3]
Miller IN, Cronin-Golomb A. Gender differences in Parkinson′s disease:clinical characteristics and cognition[J].Mov Disord201025(16):2695-2703.DOI:10.1002/mds.23388.
[4]
DeMaagd G, Philip A.Parkinson′s disease and its management:Part 1:disease entity,risk factors,pathophysiology,clinical presentation,and diagnosis[J].P T201540(8):504-532.
[5]
Goldman SM, Marek K, Ottman R,et al.Concordance for Parkinson′s disease in twins:a 20-year update[J].Ann Neurol201985(4):600-605.DOI:10.1002/ana.25441.
[6]
Acar N, Parlak H, Ozkan A,et al.The effect of docosahexaenoic acid on apelin distribution of nervous system in the experimental mouse model of Parkinson′s disease[J].Tissue Cell2019(56):41-51.DOI:10.1016/j.tice.2018.12.002.
[7]
Dickson DW.Neuropathology of Parkinson disease [J].Parkinsonism Relat Disord201846 (Suppl 1):S30-S3.DOI:10.1016/j.parkreldis.2017.07.033.
[8]
Tatemoto K, Hosoya M, Habata Y,et al.Isolation and characterization of a novel endogenous peptide ligand for the human APJ receptor[J].Biochem Biophys Res Commun1998251(2):471-476.DOI:10.1006/bbrc.1998.9489.
[9]
Lee DK, Cheng R, Nguyen T,et al.Characterization of apelin,the ligand for the APJ receptor[J].J Neurochem200074(1):34-41.DOI:10.1046/j.1471-4159.2000.0740034.x.
[10]
Pope GR, Roberts EM, Lolait SJ,et al.Central and peripheral apelin receptor distribution in the mouse:species differences with rat[J].Peptides201233(1):139-148.DOI:10.1016/j.peptides.2011.12.005.
[11]
Antushevich H, Wójcik M.Review:Apelin in disease[J].Clin Chim Acta2018(483):241-248.DOI:10.1016/j.cca.2018.05.012.
[12]
Chen P, Wang Y, Chen L,et al.Apelin-13 protects dopaminergic neurons against rotenone-induced neurotoxicity through the AMPK/mTOR/ULK-1 mediated autophagy activation[J].Int J Mol Sci202021(21):8376.DOI:10.3390/ijms21218376.
[13]
Minakaki G, Menges S, Kittel A, et al. Autophagy inhibition promotes SNCA/alpha-synuclein release and transfer via extracellular vesicles with a hybrid autophagosome-exosome-like phenotype[J].Autophagy201814(1):98-119.DOI:10.1080/15548627.2017.1395992.
[14]
Pouresmaeili-Babaki E, Esmaeili-Mahani S, Abbasnejad M,et al.Protective effect of neuropeptide Apelin-13 on 6-Hydroxydopamine-induced neurotoxicity in SH-SY5Y dopaminergic cells:involvement of its antioxidant and antiapoptotic properties[J].Rejuvenation Res201821(2):162-167.DOI:10.1089/rej.2017.1951.
[15]
Chapman NA, Dupré DJ, Rainey JK.The apelin receptor:physiology,pathology,cell signalling,and ligand modulation of a peptide-activated class A GPCR[J].Biochem Cell Biol201492(6):431-440.DOI:10.1139/bcb-2014-0072.
[16]
Jha SK, Jha NK, Kar R, et al. p38 MAPK and PI3K/AKT signalling cascades in Parkinson′s disease[J].Int J Mol Cell Med20154(2):67-86.
[17]
Kennedy SG, Kandel ES, Cross TK,et al.Akt/Protein kinase B inhibits cell death by preventing the release of cytochrome c from mitochondria[J].Mol Cell Biol199919(8):5800-5810.DOI:10.1128/MCB.19.8.5800.
[18]
Zeng XJ, Yu SP, Zhang L,et al. Neuroprotective effect of the endogenous neural peptide apelin in cultured mouse cortical neurons[J].Exp Cell Res2010316(11):1773-1783.DOI:10.1016/j.yexcr.2010.02.005.
[19]
Zou Y, Wang B, Fu W,et al.Apelin-13 protects PC12 cells from corticosterone-induced apoptosis through PI3K and ERKs activation[J].Neurochem Res201641(7):1635-1644.DOI:10.1007/s11064-016-1878-0.
[20]
Zhu J, Dou S, Jiang Y,et al.Apelin-36 exerts the cytoprotective effect against MPP(+)-induced cytotoxicity in SH-SY5Y cells through PI3K/Akt/mTOR autophagy pathway[J].Life Sci2019(224):95-108.DOI:10.1016/j.lfs.2019.03.047.
[21]
Zhu J, Gao W, Shan X,et al.Apelin-36 mediates neuroprotective effects by regulating oxidative stress,autophagy and apoptosis in MPTP-induced Parkinson′s disease model mice[J].Brain Res2020(1726):146493.DOI:10.1016/j.brainres.2019.146493.
[22]
Curry DW, Stutz B, Andrews ZB,et al.Targeting AMPK signaling as a neuroprotective strategy in Parkinson′s disease[J].J Parkinsons Dis20188(2):161-181.DOI:10.3233/JPD-171296.
[23]
Wang JF, Mei ZG, Fu Y,et al.Puerarin protects rat brain against ischemia/reperfusion injury by suppressing autophagy via the AMPK-mTOR-ULK1 signaling pathway[J].Neural Regen Res201813(6):989-998.DOI:10.4103/1673-5374.233441.
[24]
Darabi S, Noori-Zadeh A, Rajaei F, et al. SMER28 attenuates dopaminergic toxicity mediated by 6-Hydroxydopamine in the rats via modulating oxidative burdens and autophagy-related parameters[J].Neurochem Res201843(12):2313-2323.DOI:10.1007/s11064-018-2652-2.
[25]
Han B, Wang L, Fu F,et al.Hydroxysafflor yellow a promotes α-synuclein clearance via regulating autophagy in rotenone-induced Parkinson′s disease mice[J].Folia Neuropathol201856(2):133-140.DOI:10.5114/fn.2018.76618.
[26]
Wakatsuki S, Tokunaga S, Shibata M, et al. GSK3B-mediated phosphorylation of MCL1 regulates axonal autophagy to promote Wallerian degeneration[J].J Cell Biol2017216(2):477-493.DOI:10.1083/jcb.201606020.
[27]
Hou X, Watzlawik JO, Fiesel FC,et al.Autophagy in Parkinson′s disease[J].J Mol Biol2020432(8):2651-2672.DOI:10.1016/j.jmb.2020.01.037.
[28]
Yang G, Li J, Cai Y,et al.Glycyrrhizic acid alleviates 6-hydroxydopamine and corticosterone-induced neurotoxicity in SH-SY5Y cells through modulating autophagy[J].Neurochem Res201843(10):1914-1926.DOI:10.1007/s11064-018-2609-5.
[29]
Sarkar S.Regulation of autophagy by mTOR-dependent and mTOR-independent pathways:autophagy dysfunction in neurodegenerative diseases and therapeutic application of autophagy enhancers[J].Biochem Soc Trans201341(5):1103-1130.DOI:10.1042/BST20130134.
[30]
Khwanraj K, Madlah S, Grataitong K, et al. Comparative mRNA expression of eEF1A isoforms and a PI3K/Akt/mTOR pathway in a cellular model of Parkinson′s disease[J].Parkinsons Dis2016(2016):8716016.DOI:10.1155/2016/8716016.
[31]
Alers S, Löffler AS, Wesselborg S,et al.Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy:cross talk,shortcuts,and feedbacks[J].Mol Cell Biol201232(1):2-11.DOI:10.1128/MCB.06159-11.
[32]
Mantzaris MD, Bellou S, Skiada V,et al.Intracellular labile iron determines H2O2- induced apoptotic signaling via sustained activation of ASK1/JNK-p38 axis[J].Free Radic Biol Med2016(97):454-465.DOI:10.1016/j.freeradbiomed.2016.07.002.
[33]
Wu Y, Wang X, Zhou X, et al. Temporal expression of Apelin/Apelin receptor in ischemic stroke and its therapeutic potential[J].Front Mol Neurosci2017(10):1.DOI:10.3389/fnmol.2017.00001.
[34]
Duan J, Cui J, Yang Z,et al.Neuroprotective effect of Apelin 13 on ischemic stroke by activating AMPK/GSK-3β/Nrf2 signaling[J].J Neuroinflammation201916(1):24.DOI:10.1186/s12974-019-1406-7.
[35]
Xu W, Li T, Gao L,et al.Apelin-13/APJ system attenuates early brain injury via suppression of endoplasmic reticulum stress-associated TXNIP/NLRP3 inflammasome activation and oxidative stress in a AMPK-dependent manner after subarachnoid hemorrhage in rats[J].J Neuroinflammation201916(1):247.DOI:10.1186/s12974-019-1620-3.
[36]
Cherry JD, Olschowka JA, O′Banion MK.Neuroinflammation and M2 microglia:the good,the bad,and the inflamed[J].J Neuroinflammation2014(11):98.DOI:10.1186/1742-2094-11-98.
[37]
Li R, Liu W, Yin J,et al.TSG-6 attenuates inflammation-induced brain injury via modulation of microglial polarization in SAH rats through the SOCS3/STAT3 pathway[J].J Neuroinflammation201815(1):231.DOI:10.1186/s12974-018-1279-1.
[38]
Zhou S, Guo X, Chen S,et al.Apelin-13 regulates LPS-induced N9 microglia polarization involving STAT3 signaling pathway[J].Neuropeptides2019(76):101938.DOI:10.1016/j.npep.2019.101938.
[39]
Chen D, Lee J, Gu X, et al. Intranasal delivery of Apelin-13 is neuroprotective and promotes angiogenesis after ischemic stroke in mice[J].ASN Neuro20157(5):1759091415605114.DOI:10.1177/1759091415605114.
[40]
Zeng R, Luo DX, Li HP,et al.MicroRNA-135b alleviates MPP(+)-mediated Parkinson′s disease in in vitro model through suppressing FoxO1-induced NLRP3 inflammasome and pyroptosis[J].J Clin Neurosci2019(65):125-133.DOI:10.1016/j.jocn.2019.04.004.
[41]
Shacham T, Sharma N, Lederkremer GZ.Protein misfolding and ER stress in Huntington′s disease[J].Front Mol Biosci2019(6):20.DOI:10.3389/fmolb.2019.00020.
[42]
Zhang J, Zhang Z, Bao J,et al.Jia-Jian-Di-Huang-Yin-Zi decoction reduces apoptosis induced by both mitochondrial and endoplasmic reticulum caspase12 pathways in the mouse model of Parkinson′s disease[J].J Ethnopharmacol2017(203):69-79.DOI:10.1016/j.jep.2016.12.053.
[43]
Zhu J, Dou S, Jiang Y, et al. Apelin-13 protects dopaminergic neurons in MPTP-induced Parkinson′s disease model mice through inhibiting endoplasmic reticulum stress and promoting autophagy[J].Brain Res2019(1715):203-212.DOI:10.1016/j.brainres.2019.03.027.
[44]
Zhu J, Dou S, Wang C,et al.Apelin-36 mitigates MPTP/MPP+-induced neurotoxicity:involvement of α-synuclein and endoplasmic reticulum stress[J].Brain Res2019(1721):146334.DOI:10.1016/j.brainres.2019.146334.
[45]
朱俊鸽.Apelin-36在MPTP诱导的帕金森病模型小鼠中的神经保护作用及机制研究[D] .济南:山东大学,2020.
[46]
Kin K, Yasuhara T, Kameda M,et al.Animal models for Parkinson′s disease research:trends in the 2000s[J].Int J Mol Sci201920(21):5402.DOI:10.3390/ijms20215402.
[1] 李康, 冀亮, 赵维, 林乐岷. 自噬在乳腺癌生物学进展中的双重作用[J]. 中华乳腺病杂志(电子版), 2023, 17(04): 195-202.
[2] 孔莹莹, 谢璐涛, 卢晓驰, 徐杰丰, 周光居, 张茂. 丁酸钠对猪心脏骤停复苏后心脑损伤的保护作用及机制研究[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 355-362.
[3] 张晓燕, 肖东琼, 高沪, 陈琳, 唐发娟, 李熙鸿. 转录因子12过表达对脓毒症相关性脑病大鼠大脑皮质的保护作用及其机制[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 540-549.
[4] 刘星辰, 刘娟, 魏宝宝, 刘洁, 刘辉. XIAP与XAF1异常表达与卵巢癌的相关性分析[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 419-427.
[5] 周子慧, 李恭驰, 李炳辉, 王知, 刘慧真, 王卉, 邹利军. 细胞自噬在创面愈合中作用的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 542-546.
[6] 刘硕儒, 王功炜, 张斌, 李书豪, 胡成. 新型溶瘤病毒M1激活内质网应激致前列腺癌细胞凋亡的机制[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(04): 388-393.
[7] 邵浩仁, 郭佳. 铁死亡的分子机制及其在前列腺癌治疗中的研究进展[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(03): 294-298.
[8] 于迪, 于海波, 吴焕成, 李玉明, 苏彬, 陈馨. 发状分裂相关增强子1差异表达对胆固醇刺激下血管内皮细胞的影响[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 264-270.
[9] 金刚, 李英真, 施维, 李博. 帕金森病在病理生理学中的研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 315-319.
[10] 王小红, 钱晶, 翁文俊, 周国雄, 朱顺星, 祁小鸣, 刘春, 王萍, 沈伟, 程睿智, 秦璟灏. 巯基丙酮酸硫基转移酶调控核因子κB信号介导自噬对重症急性胰腺炎大鼠的影响及机制[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 422-426.
[11] 李玺琳, 章邱东. 帕金森病患者胃肠功能障碍特点及其风险因素分析[J]. 中华消化病与影像杂志(电子版), 2023, 13(03): 145-149.
[12] 耿磊, 张照婷, 许磊, 黄海, 孙毅, 杨伏猛, 徐凯, 胡春峰. 帕金森病前驱期基底神经节环路磁共振弥散张量成像的应用研究[J]. 中华临床医师杂志(电子版), 2023, 17(9): 995-1003.
[13] 邓世栋, 刘凌志, 郭大勇, 王超, 黄忠欣, 张晖辉. 沉默SNHG1基因对膀胱癌细胞增殖、凋亡、迁移和铁死亡的影响[J]. 中华临床医师杂志(电子版), 2023, 17(07): 804-811.
[14] 张敏洁, 张小杉, 段莎莎, 施依璐, 赵捷, 白天昊, 王雅晳. 氢气治疗心肌缺血再灌注损伤的作用机制及展望[J]. 中华临床医师杂志(电子版), 2023, 17(06): 744-748.
[15] 邱甜, 杨苗娟, 胡波, 郭毅, 何奕涛. 亚低温治疗脑梗死机制的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 518-521.
阅读次数
全文


摘要