[1] |
Bhatt DL, Lopes RD, Harrington RA.Diagnosis and treatment of acute coronary syndromes:a review[J]. JAMA, 2022, 327(7):662-675.DOI: 10.1001/jama.2022.0358.
|
[2] |
Khan MH, Rochlani Y, Yandrapalli S, et al.Vulnerable plaque:a review of current concepts in pathophysiology and imaging[J]. Cardiol Rev, 2020, 28(1):3-9.DOI: 10.1097/CRD.0000000000000238.
|
[3] |
Grodecki K, Cadet S, Staruch AD, et al.Noncalcified plaque burden quantified from coronary computed tomography angiography improves prediction of side branch occlusion after main vessel stenting in bifurcation lesions:results from the CT-PRECISION registry[J]. Clin Res Cardiol, 2021, 110(1):114-123.DOI: 10.1007/s00392-020-01658-1.
|
[4] |
Greenland P, Blaha MJ, Budoff MJ, et al.Coronary calcium score and cardiovascular risk[J]. J Am Coll Cardiol, 2018, 72(4):434-447.DOI: 10.1016/j.jacc.2018.05.027.
|
[5] |
van Veelen A, van der Sangen N, Delewi R, et al. Detection of vulnerable coronary plaques using invasive and non-invasive imaging modalities[J]. J Clin Med, 2022, 11(5):1361.DOI: 10.3390/jcm11051361.
|
[6] |
Masuda T, Nakaura T, Funama Y, et al.Deep learning with convolutional neural network for estimation of the characterisation of coronary plaques:validation using IB-IVUS[J]. Radiography (Lond), 2022, 28(3):661-662.DOI: 10.1016/j.radi.2022.05.002.
|
[7] |
Lee JM, Choi KH, Koo BK, et al.Prognostic implications of plaque characteristics and stenosis severity in patients with coronary artery disease[J]. J Am Coll Cardiol, 2019, 73(19):2413-2424.DOI: 10.1016/j.jacc.2019.02.060.
|
[8] |
Motoyama S, Ito H, Sarai M, et al.Plaque characterization by coronary computed tomography angiography and the likelihood of acute coronary events in mid-term follow-up[J]. J Am Coll Cardiol, 2015, 66(4):337-346.DOI: 10.1016/j.jacc.2015.05.069.
|
[9] |
Kiriᶊli HA, Schaap M, Metz CT, et al.Standardized evaluation framework for evaluating coronary artery stenosis detection,stenosis quantification and lumen segmentation algorithms in computed tomography angiography[J]. Med Image Anal, 2013, 17(8):859-876.DOI: 10.1016/j.media.2013.05.007.
|
[10] |
Cury RC, Abbara S, Achenbach S, et al.CAD-RADS(TM) Coronary Artery Disease-Reporting and Data System.An expert consensus document of the Society of Cardiovascular Computed Tomography (SCCT),the American College of Radiology (ACR) and the North American Society for Cardiovascular Imaging (NASCI).Endorsed by the American College of Cardiology[J]. J Cardiovasc Comput Tomogr, 2016, 10(4):269-281.DOI: 10.1016/j.jcct.2016.04.005.
|
[11] |
Xu P, Xue Y, Schoepf UJ, et al.Radiomics:the next frontier of cardiac computed tomography[J]. Circ Cardiovasc Imaging, 2021, 14(3):e011747.DOI: 10.1161/CIRCIMAGING.120.011747.
|
[12] |
Chen Q, Pan T, Yin X, et al.CT texture analysis of vulnerable plaques on optical coherence tomography[J]. Eur J Radiol, 2021(136):109551.DOI: 10.1016/j.ejrad.2021.109551.
|
[13] |
Jiang XY, Shao ZQ, Chai YT, et al.Non-contrast CT-based radiomic signature of pericoronary adipose tissue for screening non-calcified plaque[J]. Phys Med Biol, 2022, 67(10) DOI: 10.1088/1361-6560/ac69a7.
|
[14] |
Shaw LJ, Blankstein R, Bax JJ, et al.Society of Cardiovascular Computed Tomography/North American Society of Cardiovascular Imaging-expert consensus document on coronary CT imaging of atherosclerotic plaque[J]. J Cardiovasc Comput Tomogr, 2021, 15(2):93-109.DOI: 10.1016/j.jcct.2020.11.002.
|
[15] |
Roth GA, Mensah GA, Johnson CO, et al.Global burden of cardiovascular diseases and risk factors,1990-2019:update from the GBD 2019 study[J]. J Am Coll Cardiol, 2020, 76(25):2982-3021.DOI: 10.1016/j.jacc.2020.11.010.
|
[16] |
Khan MA, Hashim MJ, Mustafa H, et al.Global epidemiology of ischemic heart disease:results from the global burden of disease study[J]. Cureus, 2020, 12(7):e9349.DOI: 10.7759/cureus.9349.
|
[17] |
Rothwell PM, Eliasziw M, Gutnikov SA, et al.Analysis of pooled data from the randomised controlled trials of endarterectomy for symptomatic carotid stenosis[J]. Lancet, 2003, 361(9352):107-116.DOI: 10.1016/s0140-6736(03)12228-3.
|
[18] |
Hoffmann U, Ferencik M, Udelson JE, et al.Prognostic value of noninvasive cardiovascular testing in patients with stable chest pain:insights from the PROMISE trial (prospective multicenter imaging study for evaluation of chest pain)[J]. Circulation, 2017, 135(24):2320-2332.DOI: 10.1161/CIRCULATIONAHA.116.024360.
|
[19] |
Bittencourt MS, Hulten E, Ghoshhajra B, et al.Prognostic value of nonobstructive and obstructive coronary artery disease detected by coronary computed tomography angiography to identify cardiovascular events[J]. Circ Cardiovasc Imaging, 2014, 7(2):282-291.DOI: 10.1161/CIRCIMAGING.113.001047.
|
[20] |
Achenbach S, Ropers D, Hoffmann U, et al.Assessment of coronary remodeling in stenotic and nonstenotic coronary atherosclerotic lesions by multidetector spiral computed tomography[J]. J Am Coll Cardiol, 2004, 43(5):842-847.DOI: 10.1016/j.jacc.2003.09.053.
|
[21] |
Bittner DO, Mayrhofer T, Puchner SB, et al.Coronary computed tomography angiography-specific definitions of high-risk plaque features improve detection of acute coronary syndrome[J]. Circ Cardiovasc Imaging, 2018, 11(8):e007657.DOI: 10.1161/CIRCIMAGING.118.007657.
|
[22] |
Theofilis P, Sagris M, Antonopoulos AS, et al.Non-invasive modalities in the assessment of vulnerable coronary atherosclerotic plaques[J]. Tomography, 2022, 8(4):1742-1758.DOI: 10.3390/tomography8040147.
|
[23] |
Knuuti J, Wijns W, Saraste A, et al.2019 ESC guidelines for the diagnosis and management of chronic coronary syndromes[J]. Eur Heart J, 2020, 41(3):407-477.DOI: 10.1093/eurheartj/ehz425.
|
[24] |
Maroules CD, Hamilton-Craig C, Branch K, et al.Coronary Artery Disease Reporting and Data System (CAD-RADS(TM)):inter-observer agreement for assessment categories and modifiers[J]. J Cardiovasc Comput Tomogr, 2018, 12(2):125-130.DOI: 10.1016/j.jcct.2017.11.014.
|
[25] |
Kolossváry M, Kellermayer M, Merkely B, et al.Cardiac computed tomography radiomics:a comprehensive review on radiomic techniques[J]. J Thorac Imaging, 2018, 33(1):26-34.DOI: 10.1097/RTI.0000000000000268.
|
[26] |
Kolossváry M, Park J, Bang JI, et al.Identification of invasive and radionuclide imaging markers of coronary plaque vulnerability using radiomic analysis of coronary computed tomography angiography[J]. Eur Heart J Cardiovasc Imaging, 2019, 20(11):1250-1258.DOI: 10.1093/ehjci/jez033.
|
[27] |
Kolossváry M, Karády J, Szilveszter B, et al.Radiomic features are superior to conventional quantitative computed tomographic metrics to identify coronary plaques with napkin-ring sign[J]. Circ Cardiovasc Imaging, 2017, 10(12):e006843.DOI: 10.1161/CIRCIMAGING.117.006843.
|
[28] |
Lin A, Kolossváry M, Cadet S, et al.Radiomics-based precision phenotyping identifies unstable coronary plaques from computed tomography angiography[J]. JACC Cardiovasc Imaging, 2022, 15(5):859-871.DOI: 10.1016/j.jcmg.2021.11.016.
|
[29] |
Chen Q, Pan T, Wang YN, et al.A coronary CT angiography radiomics model to identify vulnerable plaque and predict cardiovascular events[J]. Radiology, 2023, 307(2):e221693.DOI: 10.1148/radiol.221693.
|
[30] |
Ebersberger U, Bauer MJ, Straube F, et al.Gender differences in epicardial adipose tissue and plaque composition by coronary CT angiography:association with cardiovascular outcome[J]. Diagnostics(Basel), 2023, 13(4):624.DOI: 10.3390/diagnostics13040624.
|
[31] |
Andreini D, Magnoni M, Conte E, et al.Coronary plaque features on CTA can identify patients at increased risk of cardiovascular events[J]. JACC Cardiovasc Imaging, 2020, 13(8):1704-1717.DOI: 10.1016/j.jcmg.2019.06.019.
|
[32] |
Ridker PM, Bhatt DL, Pradhan AD, et al.Inflammation and cholesterol as predictors of cardiovascular events among patients receiving statin therapy:a collaborative analysis of three randomised trials[J]. Lancet, 2023, 401(10384):1293-1301.DOI: 10.1016/S0140-6736(23)00215-5.
|