切换至 "中华医学电子期刊资源库"

中华诊断学电子杂志 ›› 2024, Vol. 12 ›› Issue (01) : 9 -17. doi: 10.3877/cma.j.issn.2095-655X.2024.01.002

机器学习

基于深度学习构建结直肠息肉诊断自动分类模型
陈健1, 张子豪2, 卢勇达3, 夏开建4, 王甘红5, 刘罗杰1, 徐晓丹1,()   
  1. 1. 215500 常熟市第一人民医院(苏州大学附属常熟医院)消化内科
    2. 200434 上海豪兄教育科技有限公司
    3. 215006 苏州大学附属第一医院消化内科
    4. 215500 常熟市医学人工智能与大数据重点实验室
    5. 215500 常熟市中医院(新区医院)消化内科
  • 收稿日期:2023-10-27 出版日期:2024-02-26
  • 通信作者: 徐晓丹
  • 基金资助:
    江苏省333高层次人才培养工程(SZFCXK202147); 常熟市科技计划项目(CS202116); 常熟市医药卫生科技计划项目(CSWS202316)

Construction of automatic classification model for colorectal polyp diagnosis based on deep learning

Jian Chen1, Zihao Zhang2, Yongda Lu3, Kaijian Xia4, Ganhong Wang5, Luojie Liu1, Xiaodan Xu1,()   

  1. 1. Department of Gastroenterology, Changshu NO.1 People′s Hospital (Affiliated Changshu Hospital of Soochow University), Changshu 215500, China
    2. Shanghai Hao Brothers Educational Technology Co., Ltd., Shanghai 200434, China
    3. Department of Gastroenterology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
    4. Changshu Key Laboratory of Medical Artificial Intelligence and Big Data, Changshu 215500, China
    5. Department of Gastroenterology, Changshu Traditional Chinese Medicine Hospital (New District Hospital), Changshu 215500, China
  • Received:2023-10-27 Published:2024-02-26
  • Corresponding author: Xiaodan Xu
引用本文:

陈健, 张子豪, 卢勇达, 夏开建, 王甘红, 刘罗杰, 徐晓丹. 基于深度学习构建结直肠息肉诊断自动分类模型[J]. 中华诊断学电子杂志, 2024, 12(01): 9-17.

Jian Chen, Zihao Zhang, Yongda Lu, Kaijian Xia, Ganhong Wang, Luojie Liu, Xiaodan Xu. Construction of automatic classification model for colorectal polyp diagnosis based on deep learning[J]. Chinese Journal of Diagnostics(Electronic Edition), 2024, 12(01): 9-17.

目的

探讨基于深度学习的结直肠息肉诊断自动分类模型的构建。

方法

收集2018年1月至2023年1月在苏州市3个内镜中心的不同图像增强内镜(IEE)技术下的结肠镜图像957张(常熟市第一人民医院537张,常熟市中医院359张,苏州大学附属第一医院61张),依据病理结果分为正常组、增生性息肉组和腺瘤性息肉组。利用DenseNet-121、EfficientNet、resnet101和resnet50 4种卷积神经网络(CNN)框架,构建深度学习模型,并评估其与经验不同的内镜医师的准确率、召回率、精确度、F1值和读片时间。

结果

EfficientNet在4个模型中最为优越,准确率0.961,召回率0.968,精确度0.959,F1值0.962,在读图用时方面,所有模型完成图像自动诊断任务的平均时间为(4.08±0.63)s,远快于内镜医师所需的平均时间[(291.10±17.68)s],差异有统计学意义(t=-36.22,P<0.01)。将EfficientNet预训练模型经迁移学习后的模型命名为"EffiPolyNet",其在腺瘤性息肉上有少量误分类,但准确率达0.90,AUC为0.98。t-分布随机邻域嵌入(t-SNE)可视化揭示了腺瘤性和增生性息肉间部分语义特征重叠,解释了模型的误分类。利用梯度加权分类激活映射(Grad-CAM)和沙普利可加性解释(SHAP),揭示了模型决策中的关键图像区域和特征的相对重要性。

结论

EffiPolypNet模型在多种IEE技术的结直肠息肉性质分类中表现出色,为结肠镜光学诊断提供了高效且可靠的支持。

Objective

To explore the construction of automatic classification model for the diagnosis of colorectal polyp based on deep learning.

Methods

From January 2018 to January 2023, 957 colonoscopy images were collected at 3 endoscopy centers in Suzhou (537 at Changshu NO.1 People′s Hospital, 359 at Changshu Hospital of Traditional Chinese Medicine, and 61 at the First Affiliated Hospital of Soochow University), by using various image enhanced endoscopy (IEE) techniques. Based on pathological features, these images were classified into normal group, hyperplastic polyps group, and adenomatous polyps group. By using the DenseNet-121, EfficientNet, ResNet101, and ResNet50 convolutional neural network (CNN) frameworks, deep learning models were constructed and tested against the performance of endoscopists with varied experience levels in terms of accuracy, recall rate, precision, F1 score, and time taken to read images.

Results

EfficientNet outperformed the other models, with a 0.961 accuracy, 0.968 recall rate, 0.959 precision, and 0.962 F1 score. In terms of image reading time, all models significantly outperformed endoscopists, completing automatic diagnostic tasks in an average time of (4.08±0.63) seconds compared to the average time of (291.10±17.68) seconds required by endoscopists, showing a statistical difference (t=-36.22, P<0.01). The EfficientNet pretrained model, after transfer learning, was named " EffiPolypNet". It misclassified a few adenomatous polyps but achieved an accuracy of 0.90 and an AUC of 0.98. Visualization using t-distributed stochastic neighbor embedding (t-SNE) revealed semantic feature overlaps between adenomatous and hyperplastic polyps, which could account for the misclassifications. Gradient-weighted class activation mapping (Grad-CAM) and Shapley additive explanations (SHAP) elucidated the key image regions and relative importance of features in the model′s decision-making process.

Conclusion

The EffiPolypNet model outperformed other IEE techniques in categorizing the nature of colorectal polyps, offering efficient and dependable support for optical diagnosis in colonoscopy.

图1 957张结肠镜图像尺寸与图像内镜技术分布图像注:a图为图像尺寸分布情况;b图为应用的图像内镜技术种类分布。NBI为窄带成像;i-SCAN为智能电子染色内镜技术;VIST为光电复合染色成像;SFI为聚谱成像技术;BLI为蓝色激光成像;WL为白光内镜
图2 结肠镜图像数据集特征示意图注:a图示训练集、测试集和外部测试集中各技术类别图像的分布情况;b图示不同组织学类别训练集与测试集的分布情况。WL为白光内镜;NBI为窄带成像;SFI为聚谱成像技术;VIST为光电复合染色成像;i-SCAN为智能电子染色内镜技术;BLI为蓝色激光成像
图3 基于卷积神经网络的结肠镜图像架构示意图注:图中展示的是一个从输入的RGB图像到分类决策的深度学习流程。此流程通过一系列卷积、激活和池化操作进行特征提取,并通过全连接层实现特征的高级整合,最终通过分类器输出预测结果
表1 957张结肠镜图像的临床特征
表2 不同CNN模型在结肠息肉图像测试集上的诊断性能比较
图4 性能最佳模型(EfficientNet)在不同息肉类型诊断的训练过程中各项指标的变化趋势
图5 不同深度学习模型与内镜医师息肉性质分类测试准确率及用时比较注:柱状图为准确率比较,折线图为时间比较
图6 EffiPolypNet对测试集不同类型息肉图像诊断注:a图为混淆矩阵;b图为分类诊断语义特征t-SNE降维可视化
图7 EffiPolypNet对测试集不同类型息肉图像诊断的ROC曲线注:ROC为受试者工作特征
图8 Grad-CAM对不同类型息肉图像的可视化激活图注:a图为增生性息肉原始NBI图片;b图为增生性息肉热力图;c图为增生性息肉热力图覆盖原始NBI图片;d图为腺瘤性息肉原始NBI图片;e图为腺瘤性息肉热力图;f图为腺瘤性息肉热力图覆盖原始NBI图片;橙红色区域显示模型识别息肉时的高权重区域。NBI为窄带成像;Grad-CAM为梯度加权分类激活映射
图9 不同类型息肉图像SHAP可解释性分析图注:左1为原始内镜图,右2~4图为对应SHAP图;每个特征有影响分数,红色代表正向贡献,蓝色为负向贡献。红色区域多于蓝色时,图像倾向于被诊断为该分类。a图诊断为增生性息肉,b图诊断为腺瘤性息肉。SHAP为沙普利可加性解释
[1]
Morris VK, Kennedy EB, Baxter NN, et al.Treatment of metastatic colorectal cancer:ASCO guideline[J].J Clin Oncol202341(3):678-700.DOI:10.1200/JCO.22.01690.
[2]
He X, Hang D, Wu K, et al.Long-term risk of colorectal cancer after removal of conventional adenomas and serrated polyps[J].Gastroenterology2020158(4):852-861.e4.DOI:10.1053/j.gastro.2019.06.039.
[3]
Shaukat A, Kaltenbach T, Dominitz JA, et al.Endoscopic recognition and management strategies for malignant colorectal polyps:recommendations of the US multi-society task force on colorectal cancer[J].Gastroenterology2020159(5):1916-1934.e2.DOI:10.1053/j.gastro.2020.08.050.
[4]
Tate DJ, Desomer L, Heitman SJ, et al. Clinical implications of decision making in colorectal polypectomy:an international survey of Western endoscopists suggests priorities for change[J].Endosc Int Open20208(3):E445-E455.DOI:10.1055/a-1079-4298.
[5]
Byrne MF, Chapados N, Soudan F, et al.Real-time differentiation of adenomatous and hyperplastic diminutive colorectal polyps during analysis of unaltered videos of standard colonoscopy using a deep learning model[J].Gut201968(1):94-100.DOI:10.1136/gutjnl-2017-314547.
[6]
Djinbachian R, Marchand E, Pohl H, et al.Optical diagnosis of colorectal polyps:a randomized controlled trial comparing endoscopic image-enhancing modalities[J].Gastrointest Endosc202193(3):712-719.e1.DOI:10.1016/j.gie.2020.11.023.
[7]
Sundaram S, Giri S, Jearth V, et al.Image-enhanced endoscopy and endoscopic resection practices in the colon among endoscopists in India[J].Endosc Int Open202210(9):E1181-E1187.DOI:10.1055/a-1914-6197.
[8]
Bang CS, Lee JJ, Baik GH.Computer-aided diagnosis of diminutive colorectal polyps in endoscopic images:systematic review and meta-analysis of diagnostic test accuracy[J].J Med Internet Res202123(8):e29682.DOI:10.2196/29682.
[9]
Kikutsuji T, Mori Y, Okazaki KI, et al.Explaining reaction coordinates of alanine dipeptide isomerization obtained from deep neural networks using Explainable Artificial Intelligence (XAI)[J].J Chem Phys2022156(15):154108.DOI:10.1063/5.0087310.
[10]
Zhang Y, Hong D, McClement D, et al.Grad-CAM helps interpret the deep learning models trained to classify multiple sclerosis types using clinical brain magnetic resonance imaging[J].J Neurosci Methods2021(353):109098.DOI:10.1016/j.jneumeth.2021.109098.
[11]
Tan M, Le QV.EfficientNet:rethinking model scaling for convolutional neural networks[J].In Proceedings of the 36th International Conference on Machine Learning2019(97):6105-6114.DOI:10.48550/arXiv.1905.11946.
[12]
Glissen Brown JR, Mansour NM, Wang P, et al. Deep learning computer-aided polyp detection reduces adenoma miss rate:a united states multi-center randomized tandem colonoscopy study (CADeT-CS Trial)[J].Clin Gastroenterol Hepatol202220(7):1499-1507.e4.DOI:10.1016/j.cgh.2021.09.009.
[13]
Rondonotti E, Hassan C, Tamanini G, et al.Artificial intelligence-assisted optical diagnosis for the resect-and-discard strategy in clinical practice:the Artificial intelligence BLI Characterization (ABC) study[J].Endoscopy202355(1):14-22.DOI:10.1055/a-1852-0330.
[14]
Patel K, Li K, Tao K, et al.A comparative study on polyp classification using convolutional neural networks[J].PLoS One202015(7):e0236452.DOI:10.1371/journal.pone.0236452.
[15]
Urban G, Tripathi P, Alkayali T, et al.Deep learning localizes and identifies polyps in real time with 96% accuracy in screening colonoscopy[J].Gastroenterology2018155(4):1069-1078.e8.DOI:10.1053/j.gastro.2018.06.037.
[1] 朱连华, 费翔, 韩鹏, 姜波, 李楠, 罗渝昆. 高帧频超声造影在胆囊息肉样病变中的鉴别诊断价值[J]. 中华医学超声杂志(电子版), 2023, 20(09): 904-910.
[2] 杨菲菲, 林锡祥, 陈亦新, 王秋霜, 张丽伟, 陈煦, 张梅青, 王淑华, 何昆仑. 基于深度学习的超声心动图自动识别节段性室壁运动异常的研究[J]. 中华医学超声杂志(电子版), 2023, 20(04): 424-429.
[3] 唐玮, 何融泉, 黄素宁. 深度学习在乳腺癌影像诊疗和预后预测中的应用[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 323-328.
[4] 李锐颖, 危望, 王达志, 时志斌. 深度学习技术在膝关节疾病中的研究现状与展望[J]. 中华关节外科杂志(电子版), 2023, 17(05): 722-725.
[5] 袁成雪, 张宗霞, 许婷, 斯郎拉姆. 三种内镜手术治疗结肠息肉的效果及安全性观察[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 78-81.
[6] 李晓阳, 刘柏隆, 周祥福. 大数据及人工智能对女性盆底功能障碍性疾病的诊断及风险预测[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(06): 549-552.
[7] 邢晓伟, 刘雨辰, 赵冰, 王明刚. 基于术前腹部CT的卷积神经网络对腹壁切口疝术后复发预测价值[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 677-681.
[8] 雷漫诗, 邓锶锶, 汪昕蓉, 黄锦彬, 向青, 熊安妮, 孟占鳌. 人工智能辅助压缩感知技术在上腹部T2WI压脂序列中的应用[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 551-556.
[9] 韩冰, 顾劲扬. 深度学习神经网络在肝癌诊疗中的研究及应用前景[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 480-485.
[10] 王晓东, 汪恺, 葛昭, 丁忠祥, 徐骁. 计算机视觉技术在肝癌肝移植疗效提升中的研究进展[J]. 中华肝脏外科手术学电子杂志, 2023, 12(04): 361-366.
[11] 葛云鹏, 崔红元, 宋京海. 人工智能在原发性肝癌诊断、治疗及预后中的应用[J]. 中华肝脏外科手术学电子杂志, 2023, 12(04): 367-371.
[12] 张剑明, 叶文慧, 牟廷裕, 蓝孝亮, 邓海军. 腹腔镜全结直肠切除、回肠J型储袋-肛管吻合术近期并发症及防治策略[J]. 中华结直肠疾病电子杂志, 2023, 12(05): 388-395.
[13] 王守森, 方翌, 冯添顺, 魏梁锋. 深度学习模型在侵袭性垂体腺瘤诊疗中的应用[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(06): 382-384.
[14] 丁亚梅, 田野, 钱进, 陈梅, 季鸿颖. 良性胃溃疡出血患者内镜治疗术后再出血的危险因素分析[J]. 中华消化病与影像杂志(电子版), 2023, 13(05): 322-325.
[15] 胡平, 鄢腾峰, 周海柱, 祝新根. 人工智能在非增强CT图像中颅内出血早期检出和血肿分割的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(04): 410-416.
阅读次数
全文


摘要