[1] |
Lv S, Lu C, Li M, et al.The dynamic changes in myocardial collagen metabolism in experimental autoimmune myocarditis rats[J]. Hellenic J Cardiol, 2018, 59(4):234-237.DOI: 10.1016/j.hjc.2017.12.006.
|
[2] |
|
[3] |
Hanna A, Shinde AV, Li R, et al. Collagen denaturation in the infarcted myocardium involves temporally distinct effects of MT1-MMP-dependent proteolysis and mechanical tension[J]. Matrix Biol, 2021(99):18-42.DOI: 10.1016/j.matbio.2021.05.005.
|
[4] |
Steffensen LB, Rasmussen LM.A role for collagen type IV in cardiovascular disease?[J]. Am J Physiol Heart Circ Physiol, 2018, 315(3):H610-H625.DOI: 10.1152/ajpheart.00070.2018.
|
[5] |
Rusu M, Hilse K, Schuh A, et al. Biomechanical assessment of remote and postinfarction scar remodeling following myocardial infarction[J]. Sci Rep, 2019, 9(1):16744.DOI: 10.1038/s41598-019-53351-7.
|
[6] |
Sadri G, Fischer AG, Brittian KR, et al.Collagen type XIX regulates cardiac extracellular matrix structure and ventricular function[J]. Matrix Biol, 2022(109):49-69.DOI: 10.1016/j.matbio.2022.03.007.
|
[7] |
Singh D, Rai V, Agrawal DK.Regulation of collagen I and collagen III in tissue injury and regeneration[J]. Cardiol Cardiovasc Med, 2023, 7(1):5-16.DOI: 10.26502/fccm.92920302.
|
[8] |
Sudhakar A, Boosani CS. Signaling mechanisms of endogenous angiogenesis inhibitors derived from type IV collagen[J]. Gene Regul Syst Bio, 2007(1):217-226.DOI: 10.4137/grsb.s345.
|
[9] |
Colorado PC, Torre A, Kamphaus G, et al.Anti-angiogenic cues from vascular basement membrane collagen[J].Cancer Res,2000,60(9):2520-2526.
|
[10] |
Yokota T, McCourt J, Ma F, et al.Type V collagen in scar tissue regulates the size of scar after heart injury[J]. Cell, 2020, 182(3):545-562.e23.DOI: 10.1016/j.cell.2020.06.030.
|
[11] |
Radhiga T, Senthil S, Sundaresan A, et al.Ursolic acid modulates MMPs,collagen-I,α-SMA,and TGF-β expression in isoproterenol-induced myocardial infarction in rats[J]. Hum Exp Toxicol, 2019, 38(7):785-793.DOI: 10.1177/0960327119842620.
|
[12] |
Frangogiannis NG.Pathophysiology of myocardial infarction[J]. Compr Physiol, 2015, 5(4):1841-1875.DOI: 10.1002/cphy.c150006.
|
[13] |
Yang HX, Xu GR, Zhang C, et al.The aqueous extract of Gentianella acuta improves isoproterenol-induced myocardial fibrosis via inhibition of the TGF-β1/Smads signaling pathway[J]. Int J Mol Med, 2020, 45(1):223-233.DOI: 10.3892/ijmm.2019.4410.
|
[14] |
Li J, Ge F, Wuken S, et al.Zerumbone,a humulane sesquiterpene from Syringa pinnatifolia,attenuates cardiac fibrosis by inhibiting of the TGF-β1/Smad signaling pathway after myocardial infarction in mice[J]. Phytomedicine, 2022(100):154078.DOI: 10.1016/j.phymed.2022.154078.
|
[15] |
Venugopal H, Hanna A, Humeres C, et al.Properties and functions of fibroblasts and myofibroblasts in myocardial infarction[J]. Cells, 2022, 11(9):1386.DOI: 10.3390/cells11091386.
|
[16] |
Gao L, Wang LY, Liu ZQ, et al.TNAP inhibition attenuates cardiac fibrosis induced by myocardial infarction through deactivating TGF-β1/Smads and activating P53 signaling pathways[J]. Cell Death Dis, 2020, 11(1):44.DOI: 10.1038/s41419-020-2243-4.
|
[17] |
Kuhn TC, Knobel J, Burkert-Rettenmaier S, et al.Secretome analysis of cardiomyocytes identifies PCSK6 (proprotein convertase subtilisin/kexin type (6) as a novel player in cardiac remodeling after myocardial infarction[J]. Circulation, 2020, 141(20):1628-1644.DOI: 10.1161/CIRCULATIONAHA.119.044914.
|
[18] |
Schumacher D, Alampour-Rajabi S, Ponomariov V, et al.Cardiac FGF23:new insights into the role and function of FGF23 after acute myocardial infarction[J]. Cardiovasc Pathol, 2019(40):47-54.DOI: 10.1016/j.carpath.2019.02.001.
|
[19] |
Pollard CM, Desimine VL, Wertz SL, et al.Deletion of osteopontin enhances β-adrenergic receptor-dependent anti-fibrotic signaling in cardiomyocytes[J]. Int J Mol Sci, 2019, 20(6):1396.DOI: 10.3390/ijms20061396.
|
[20] |
Du Y, Demillard LJ, Ren J.Catecholamine-induced cardiotoxicity:a critical element in the pathophysiology of stroke-induced heart injury[J]. Life Sci, 2021(287):120106.DOI: 10.1016/j.lfs.2021.120106.
|
[21] |
Wu Y, Liu Y, Pan Y, et al.MicroRNA-135a inhibits cardiac fibrosis induced by isoproterenol via TRPM7 channel[J]. Biomed Pharmacother, 2018(104):252-260.DOI: 10.1016/j.biopha.2018.04.157.
|
[22] |
Hu G, Ding X, Gao F, et al.Calcium and integrin binding protein 1 (CIB1) induces myocardial fibrosis in myocardial infarction via regulating the PI3K/Akt pathway[J]. Exp Anim, 2022, 71(1):1-13.DOI: 10.1538/expanim.21-0063.
|
[23] |
Zhang H, Zhang P, Long CD, et al.m6A methyltransferase METTL3 promotes retinoblastoma progression via PI3K/AKT/mTOR pathway[J]. J Cell Mol Med, 2020, 24(21):12368-12378.DOI: 10.1111/jcmm.15736.
|
[24] |
Meng F, Liu Y, Chen Q, et al.METTL3 contributes to renal ischemia-reperfusion injury by regulating Foxd1 methylation[J]. Am J Physiol Renal Physiol, 2020, 319(5):F839-F847.DOI: 10.1152/ajprenal.00222.2020.
|
[25] |
Song H, Song SX, Cheng M, et al.METTL3-mediated m6A RNA methylation promotes the anti-tumour immunity of natural killer cells [J]. Nat Commun, 2021, 12(1):5522.DOI: 10.1038/s41467-021-25803-0.
|
[26] |
Wang H, Xu B, Shi J.N6-methyladenosine METTL3 promotes the breast cancer progression via targeting Bcl-2[J]. Gene, 2020(722):144076.DOI: 10.1016/j.gene.2019.144076.
|
[27] |
Lee H, Bao S, Qian Y, et al.Stage-specific requirement for Mettl3-dependent m(6)A mRNA methylation during haematopoietic stem cell differentiation[J]. Nat Cell Biol, 2019, 21(6):700-709.DOI: 10.1038/s41556-019-0318-1.
|
[28] |
Li XZ, Yuan BC, Lu M, et al.The methyltransferase METTL3 negatively regulates nonalcoholic steatohepatitis (NASH) progression[J]. Nat Commun, 2021, 12(1):7213.DOI: 10.1038/s41467-021-27539-3.
|
[29] |
Wang X, Li Y, Li J, et al.Mechanism of METTL3-mediated m(6)A modification in cardiomyocyte pyroptosis and myocardial ischemia-reperfusion injury[J]. Cardiovasc Drugs Ther, 2023, 37(3):435-448.DOI: 10.1007/s10557-021-07300-0.
|
[30] |
Zhao K, Yang C, Zhang J, et al.METTL3 improves cardiomyocyte proliferation upon myocardial infarction via upregulating miR-17-3p in a DGCR8-dependent manner[J]. Cell Death Disco, 2021, 7(1):291.DOI: 10.1038/s41420-021-00688-6.
|
[31] |
Dorn LE, Lasman L, Chen J, et al.The N(6)-methyladenosine mRNA methylase METTL3 controls cardiac homeostasis and hypertrophy[J]. Circulation, 2019, 139(4):533-545.DOI: 10.1161/CIRCULATIONAHA.118.036146.
|
[32] |
Li T, Zhuang Y, Yang W, et al. Silencing of METTL3 attenuates cardiac fibrosis induced by myocardial infarction via inhibiting the activation of cardiac fibroblasts[J]. FASEB J, 2021, 35(2):e21162.DOI: 10.1096/fj.201903169R.
|
[33] |
Li G, Zhao C, Fang S.SGLT2 promotes cardiac fibrosis following myocardial infarction and is regulated by miR-141[J]. Exp Ther Med, 2021, 22(1):715.DOI: 10.3892/etm.2021.10147.
|
[34] |
Wang C, Zhang C, Liu L, et al.Macrophage-derived mir-155-containing exosomes suppress fibroblast proliferation and promote fibroblast inflammation during cardiac injury[J]. Mol Ther, 2017, 25(1):192-204.DOI: 10.1016/j.ymthe.2016.09.001.
|
[35] |
Li Y, Duan JZ, He Q, et al. miR-155 modulates high glucose-induced cardiac fibrosis via the Nrf2/HO-1 signaling pathway[J]. Mol Med Rep, 2020, 22(5):4003-4016.DOI: 10.3892/mmr.2020.11495.
|
[36] |
Wang X, Khalil RA.Matrix metalloproteinases,vascular remodeling,and vascular disease[J]. Adv Pharmacol, 2018(81):241-330.DOI: 10.1016/bs.apha.2017.08.002.
|
[37] |
Bayrakci N, Özkan G, Akpinar S, et al.Procollagen C-proteinase enhancer-1 and renal failure in multiple myeloma[J]. Int Urol Nephrol, 2022, 54(11):3033-3038.DOI: 10.1007/s11255-022-03378-z.
|
[38] |
Lagoutte P, Bettler E, Vadon-Le Goff S, et al. Procollagen C-proteinase enhancer-1 (PCPE-1),a potential biomarker and therapeutic target for fibrosis[J]. Matrix Biol Plus, 2021(11):100062.DOI: 10.1016/j.mbplus.2021.100062.
|
[39] |
Reichert K, Pereira do Carmo HR, Galluce Torina A, et al.Atorvastatin improves ventricular remodeling after myocardial infarction by interfering with collagen metabolism[J]. PLoS One, 2016, 11(11):e0166845.DOI: 10.1371/journal.pone.0166845.
|
[40] |
Li X, Wang G, Qi LM, et al.Aspirin reduces cardiac interstitial fibrosis by inhibiting Erk1/2-Serpine 2 and P-Akt signalling pathways[J]. Cell Physiol Biochem, 2018, 45(5):1955-1965.DOI: 10.1159/000487972.
|
[41] |
Zhang Y, Lin X, Chu Y, et al.Dapagliflozin:a sodium-glucose cotransporter 2 inhibitor,attenuates angiotensin II-induced cardiac fibrotic remodeling by regulating TGFβ1/Smad signaling[J]. Cardiovasc Diabetol, 2021, 20(1):121.DOI: 10.1186/s12933-021-01312-8.
|
[42] |
Ma J, Yin C, Ma S, et al.Shensong Yangxin capsule reduces atrial fibrillation susceptibility by inhibiting atrial fibrosis in rats with post-myocardial infarction heart failure[J]. Drug Des Devel Ther, 2018(12):3407-3418.DOI: 10.2147/DDDT.S182834.
|
[43] |
Ma S, Ma J, Guo L, et al.Tongguan capsule-derived herb reduces susceptibility to atrial fibrillation by inhibiting left atrial fibrosis via modulating cardiac fibroblasts[J]. J Cell Mol Med, 2019, 23(2):1197-1210.DOI: 10.1111/jcmm.14022.
|
[44] |
Yang Y, Li J, Rao T, et al.The role and mechanism of hyperoside against myocardial infarction in mice by regulating autophagy via NLRP1 inflammation pathway[J]. J Ethnopharmacol, 2021(276):114187.DOI: 10.1016/j.jep.2021.114187.
|
[45] |
Tan Z, Jiang X, Zhou W, et al.Taohong siwu decoction attenuates myocardial fibrosis by inhibiting fibrosis proliferation and collagen deposition via TGFBR1 signaling pathway[J]. J Ethnopharmacol, 2021(270):113838.DOI: 10.1016/j.jep.2021.113838.
|
[46] |
Li X, Xiang N, Wang Z.Ginsenoside Rg2 attenuates myocardial fibrosis and improves cardiac function after myocardial infarction via AKT signaling pathway[J]. Biosci Biotechnol Biochem, 2020, 84(11):2199-2206.DOI: 10.1080/09168451.2020.1793292.
|
[47] |
Li M, Tan H, Gao T, et al.Gypensapogenin I ameliorates isoproterenol (ISO)-induced myocardial damage through regulating the TLR4/NF-κB/NLRP3 pathway[J]. Molecules, 2022, 27(16).DOI: 10.3390/molecules27165298.
|
[48] |
Yang J, Wang B, Li N, et al.Salvia miltiorrhiza and carthamus tinctorius extract prevents cardiac fibrosis and dysfunction after myocardial infarction by epigenetically inhibiting Smad3 expression[J]. Evid Based Complement Alternat Med, 2019(2019):6479136.DOI: 10.1155/2019/6479136.
|
[49] |
Ni T, Huang X, Pan S, et al.Dihydrolycorine attenuates cardiac fibrosis and dysfunction by downregulating runx1 following myocardial infarction[J]. Oxid Med Cell Longev, 2021(2021):8528239.DOI: 10.1155/2021/8528239.
|
[50] |
Zhang G, Zhang X, Li D, et al.Long-term oral atazanavir attenuates myocardial infarction-induced cardiac fibrosis[J]. Eur J Pharmacol, 2018(828):97-102.DOI: 10.1016/j.ejphar.2018.03.041.
|
[51] |
Chen P, Zhou D, Liu Y, et al.Peiminine inhibits myocardial injury and fibrosis after myocardial infarction in rats by regulating mitogen-activated protein kinase pathway[J]. Korean J Physiol Pharmacol, 2022, 26(2):87-94.DOI: 10.4196/kjpp.2022.26.2.87.
|
[52] |
Gallet R, Dawkins J, Valle J, et al.Exosomes secreted by cardiosphere-derived cells reduce scarring,attenuate adverse remodelling,and improve function in acute and chronic porcine myocardial infarction[J]. Eur Heart J, 2017, 38(3):201-211.DOI: 10.1093/eurheartj/ehw240.
|
[53] |
Jung M, Ma YG, Iyer RP, et al.IL-10 improves cardiac remodeling after myocardial infarction by stimulating M2 macrophage polarization and fibroblast activation[J]. Basic Res Cardiol, 2017, 112(3):33.DOI: 10.1007/S00395-017-0622-5.
|