切换至 "中华医学电子期刊资源库"

中华诊断学电子杂志 ›› 2024, Vol. 12 ›› Issue (01) : 25 -30. doi: 10.3877/cma.j.issn.2095-655X.2024.01.004

心血管疾病诊治

胶原在心肌梗死后心脏重构中的研究进展
姜晓宇1, 付迪1, 陈雪英2, 申程2, 甘立军2,()   
  1. 1. 272067 济宁医学院临床医学院
    2. 272029 济宁医学院附属医院心内科;济宁市心血管疾病诊疗重点实验室
  • 收稿日期:2023-07-27 出版日期:2024-02-26
  • 通信作者: 甘立军
  • 基金资助:
    国家自然科学基金(82000269); 山东省中医药科技项目重点项目(Z-2022081)

Research progress of collagen in cardiac remodeling after myocardial infarction

Xiaoyu Jiang1, Di Fu1, Xueying Chen2, Cheng Shen2, Lijun Gan2,()   

  1. 1. College of Clinical Medicine, Jining Medical University, Jining 272067, China
    2. Department of Cardiology,; Jining Key Laboratory for Diagnosis and Treatment of Cardiovascular Disease, Affiliated Hospital of Jining Medical University, Jining 272029, China
  • Received:2023-07-27 Published:2024-02-26
  • Corresponding author: Lijun Gan
引用本文:

姜晓宇, 付迪, 陈雪英, 申程, 甘立军. 胶原在心肌梗死后心脏重构中的研究进展[J]. 中华诊断学电子杂志, 2024, 12(01): 25-30.

Xiaoyu Jiang, Di Fu, Xueying Chen, Cheng Shen, Lijun Gan. Research progress of collagen in cardiac remodeling after myocardial infarction[J]. Chinese Journal of Diagnostics(Electronic Edition), 2024, 12(01): 25-30.

心肌胶原是构成心肌细胞外基质的主要成分,维持心脏结构和心肌细胞功能的完整性,并在心肌梗死后心脏功能的变化和心脏重构中起着重要作用。心肌梗死是常见的心血管疾病,因此探讨胶原蛋白成分在心肌梗死后承担的功能十分必要。心肌胶原受转化生长因子-β1/Smads信号通路、神经内分泌以及多种调控分子影响,不同类型胶原在心脏中承担着不同的作用以维持心脏正常功能,在心肌梗死后大部分心肌胶原表达升高,也有部分胶原,比如Ⅴ型胶原因消耗比例下降,进而导致瘢痕面积增大,因此,适合的胶原比例是维持心脏正常功能的前提。笔者就心肌胶原的功能、心肌梗死后心肌胶原的变化、调控心肌胶原变化的机制以及对心肌胶原可产生影响的药物研究进行综述。

Myocardial collagen is the primary component of the extracellular matrix in the cardiomyocardium. It is responsible for maintaining the integrity of the heart structure and cardiomyocyte function and plays an important role in the change of cardiac function and cardiac remodeling after myocardial infarction. Myocardial infarction is a common cardiovascular disease, so it is essential to explore the function of collagen components after myocardial infarction. Myocardial collagen is affected by transforming growth factor-β1/Smads signaling pathway, neuroendocrine and a variety of regulatory molecules. Different types of collagen in the heart serve distinct functions to maintain the normal function of the heart. After myocardial infarction, most of the myocardial collagen exhibits increased expression. However, some collagen, specifically type V collagen, can contribute to an increase in scar area due to its decreasing consumption proportion. Therefore, maintaining an appropriate ratio of collagen is the precondition of maintaining normal heart function. The author reviews the functions of myocardial collagen, the alterations in myocardial collagen after myocardial infarction, the mechanisms of regulating changes in myocardial collagen, and the pharmaceutical interventions that can affect myocardial collagen.

图1 心脏TGF-β1/Smads信号通路注:TGF-β1为转化生长因子β1; TβR为细胞膜上的丝氨酸/苏氨酸激酶型受体形成的功能性复合物;cardial fibroblast为心肌成纤维细胞;fibrosis-relate gene α-SMA COL为纤维化相关基因α-SMA、胶原;fibrosis为纤维化;Smad2、Smad3、Smad7为受体活化型Smad,Smad2、Smad3能被TβRⅠ受体激活促进胶原基因和平滑肌肌动蛋白(α-SMA)的表达,促进纤维化及心室重塑,Smad7能抑制Smad2/3的磷酸化达到抑制纤维化和心室重塑的作用
表1 改善胶原沉积的药物
[1]
Lv S, Lu C, Li M, et al.The dynamic changes in myocardial collagen metabolism in experimental autoimmune myocarditis rats[J].Hellenic J Cardiol201859(4):234-237.DOI:10.1016/j.hjc.2017.12.006.
[2]
Ricard-Blum S.The collagen family[J].Cold Spring Harb Perspect Biol20113(1):a004978.DOI:10.1101/cshperspect.a004978.
[3]
Hanna A, Shinde AV, Li R, et al. Collagen denaturation in the infarcted myocardium involves temporally distinct effects of MT1-MMP-dependent proteolysis and mechanical tension[J].Matrix Biol2021(99):18-42.DOI:10.1016/j.matbio.2021.05.005.
[4]
Steffensen LB, Rasmussen LM.A role for collagen type IV in cardiovascular disease?[J].Am J Physiol Heart Circ Physiol2018315(3):H610-H625.DOI:10.1152/ajpheart.00070.2018.
[5]
Rusu M, Hilse K, Schuh A, et al. Biomechanical assessment of remote and postinfarction scar remodeling following myocardial infarction[J].Sci Rep20199(1):16744.DOI:10.1038/s41598-019-53351-7.
[6]
Sadri G, Fischer AG, Brittian KR, et al.Collagen type XIX regulates cardiac extracellular matrix structure and ventricular function[J].Matrix Biol2022(109):49-69.DOI:10.1016/j.matbio.2022.03.007.
[7]
Singh D, Rai V, Agrawal DK.Regulation of collagen I and collagen III in tissue injury and regeneration[J].Cardiol Cardiovasc Med20237(1):5-16.DOI:10.26502/fccm.92920302.
[8]
Sudhakar A, Boosani CS. Signaling mechanisms of endogenous angiogenesis inhibitors derived from type IV collagen[J].Gene Regul Syst Bio2007(1):217-226.DOI:10.4137/grsb.s345.
[9]
Colorado PC, Torre A, Kamphaus G, et al.Anti-angiogenic cues from vascular basement membrane collagen[J].Cancer Res200060(9):2520-2526.
[10]
Yokota T, McCourt J, Ma F, et al.Type V collagen in scar tissue regulates the size of scar after heart injury[J].Cell2020182(3):545-562.e23.DOI:10.1016/j.cell.2020.06.030.
[11]
Radhiga T, Senthil S, Sundaresan A, et al.Ursolic acid modulates MMPs,collagen-I,α-SMA,and TGF-β expression in isoproterenol-induced myocardial infarction in rats[J].Hum Exp Toxicol201938(7):785-793.DOI:10.1177/0960327119842620.
[12]
Frangogiannis NG.Pathophysiology of myocardial infarction[J].Compr Physiol20155(4):1841-1875.DOI:10.1002/cphy.c150006.
[13]
Yang HX, Xu GR, Zhang C, et al.The aqueous extract of Gentianella acuta improves isoproterenol-induced myocardial fibrosis via inhibition of the TGF-β1/Smads signaling pathway[J].Int J Mol Med202045(1):223-233.DOI:10.3892/ijmm.2019.4410.
[14]
Li J, Ge F, Wuken S, et al.Zerumbone,a humulane sesquiterpene from Syringa pinnatifolia,attenuates cardiac fibrosis by inhibiting of the TGF-β1/Smad signaling pathway after myocardial infarction in mice[J].Phytomedicine2022(100):154078.DOI:10.1016/j.phymed.2022.154078.
[15]
Venugopal H, Hanna A, Humeres C, et al.Properties and functions of fibroblasts and myofibroblasts in myocardial infarction[J].Cells202211(9):1386.DOI:10.3390/cells11091386.
[16]
Gao L, Wang LY, Liu ZQ, et al.TNAP inhibition attenuates cardiac fibrosis induced by myocardial infarction through deactivating TGF-β1/Smads and activating P53 signaling pathways[J].Cell Death Dis202011(1):44.DOI:10.1038/s41419-020-2243-4.
[17]
Kuhn TC, Knobel J, Burkert-Rettenmaier S, et al.Secretome analysis of cardiomyocytes identifies PCSK6 (proprotein convertase subtilisin/kexin type (6) as a novel player in cardiac remodeling after myocardial infarction[J].Circulation2020141(20):1628-1644.DOI:10.1161/CIRCULATIONAHA.119.044914.
[18]
Schumacher D, Alampour-Rajabi S, Ponomariov V, et al.Cardiac FGF23:new insights into the role and function of FGF23 after acute myocardial infarction[J].Cardiovasc Pathol2019(40):47-54.DOI:10.1016/j.carpath.2019.02.001.
[19]
Pollard CM, Desimine VL, Wertz SL, et al.Deletion of osteopontin enhances β-adrenergic receptor-dependent anti-fibrotic signaling in cardiomyocytes[J].Int J Mol Sci201920(6):1396.DOI:10.3390/ijms20061396.
[20]
Du Y, Demillard LJ, Ren J.Catecholamine-induced cardiotoxicity:a critical element in the pathophysiology of stroke-induced heart injury[J].Life Sci2021(287):120106.DOI:10.1016/j.lfs.2021.120106.
[21]
Wu Y, Liu Y, Pan Y, et al.MicroRNA-135a inhibits cardiac fibrosis induced by isoproterenol via TRPM7 channel[J].Biomed Pharmacother2018(104):252-260.DOI:10.1016/j.biopha.2018.04.157.
[22]
Hu G, Ding X, Gao F, et al.Calcium and integrin binding protein 1 (CIB1) induces myocardial fibrosis in myocardial infarction via regulating the PI3K/Akt pathway[J].Exp Anim202271(1):1-13.DOI:10.1538/expanim.21-0063.
[23]
Zhang H, Zhang P, Long CD, et al.m6A methyltransferase METTL3 promotes retinoblastoma progression via PI3K/AKT/mTOR pathway[J].J Cell Mol Med202024(21):12368-12378.DOI:10.1111/jcmm.15736.
[24]
Meng F, Liu Y, Chen Q, et al.METTL3 contributes to renal ischemia-reperfusion injury by regulating Foxd1 methylation[J].Am J Physiol Renal Physiol2020319(5):F839-F847.DOI:10.1152/ajprenal.00222.2020.
[25]
Song H, Song SX, Cheng M, et al.METTL3-mediated m6A RNA methylation promotes the anti-tumour immunity of natural killer cells [J].Nat Commun202112(1):5522.DOI:10.1038/s41467-021-25803-0.
[26]
Wang H, Xu B, Shi J.N6-methyladenosine METTL3 promotes the breast cancer progression via targeting Bcl-2[J].Gene2020(722):144076.DOI:10.1016/j.gene.2019.144076.
[27]
Lee H, Bao S, Qian Y, et al.Stage-specific requirement for Mettl3-dependent m(6)A mRNA methylation during haematopoietic stem cell differentiation[J].Nat Cell Biol201921(6):700-709.DOI:10.1038/s41556-019-0318-1.
[28]
Li XZ, Yuan BC, Lu M, et al.The methyltransferase METTL3 negatively regulates nonalcoholic steatohepatitis (NASH) progression[J].Nat Commun202112(1):7213.DOI:10.1038/s41467-021-27539-3.
[29]
Wang X, Li Y, Li J, et al.Mechanism of METTL3-mediated m(6)A modification in cardiomyocyte pyroptosis and myocardial ischemia-reperfusion injury[J].Cardiovasc Drugs Ther202337(3):435-448.DOI:10.1007/s10557-021-07300-0.
[30]
Zhao K, Yang C, Zhang J, et al.METTL3 improves cardiomyocyte proliferation upon myocardial infarction via upregulating miR-17-3p in a DGCR8-dependent manner[J].Cell Death Disco20217(1):291.DOI:10.1038/s41420-021-00688-6.
[31]
Dorn LE, Lasman L, Chen J, et al.The N(6)-methyladenosine mRNA methylase METTL3 controls cardiac homeostasis and hypertrophy[J].Circulation2019139(4):533-545.DOI:10.1161/CIRCULATIONAHA.118.036146.
[32]
Li T, Zhuang Y, Yang W, et al. Silencing of METTL3 attenuates cardiac fibrosis induced by myocardial infarction via inhibiting the activation of cardiac fibroblasts[J].FASEB J202135(2):e21162.DOI:10.1096/fj.201903169R.
[33]
Li G, Zhao C, Fang S.SGLT2 promotes cardiac fibrosis following myocardial infarction and is regulated by miR-141[J].Exp Ther Med202122(1):715.DOI:10.3892/etm.2021.10147.
[34]
Wang C, Zhang C, Liu L, et al.Macrophage-derived mir-155-containing exosomes suppress fibroblast proliferation and promote fibroblast inflammation during cardiac injury[J].Mol Ther201725(1):192-204.DOI:10.1016/j.ymthe.2016.09.001.
[35]
Li Y, Duan JZ, He Q, et al. miR-155 modulates high glucose-induced cardiac fibrosis via the Nrf2/HO-1 signaling pathway[J].Mol Med Rep202022(5):4003-4016.DOI:10.3892/mmr.2020.11495.
[36]
Wang X, Khalil RA.Matrix metalloproteinases,vascular remodeling,and vascular disease[J].Adv Pharmacol2018(81):241-330.DOI:10.1016/bs.apha.2017.08.002.
[37]
Bayrakci N, Özkan G, Akpinar S, et al.Procollagen C-proteinase enhancer-1 and renal failure in multiple myeloma[J].Int Urol Nephrol202254(11):3033-3038.DOI:10.1007/s11255-022-03378-z.
[38]
Lagoutte P, Bettler E, Vadon-Le Goff S, et al. Procollagen C-proteinase enhancer-1 (PCPE-1),a potential biomarker and therapeutic target for fibrosis[J].Matrix Biol Plus2021(11):100062.DOI:10.1016/j.mbplus.2021.100062.
[39]
Reichert K, Pereira do Carmo HR, Galluce Torina A, et al.Atorvastatin improves ventricular remodeling after myocardial infarction by interfering with collagen metabolism[J].PLoS One201611(11):e0166845.DOI:10.1371/journal.pone.0166845.
[40]
Li X, Wang G, Qi LM, et al.Aspirin reduces cardiac interstitial fibrosis by inhibiting Erk1/2-Serpine 2 and P-Akt signalling pathways[J].Cell Physiol Biochem201845(5):1955-1965.DOI:10.1159/000487972.
[41]
Zhang Y, Lin X, Chu Y, et al.Dapagliflozin:a sodium-glucose cotransporter 2 inhibitor,attenuates angiotensin II-induced cardiac fibrotic remodeling by regulating TGFβ1/Smad signaling[J].Cardiovasc Diabetol202120(1):121.DOI:10.1186/s12933-021-01312-8.
[42]
Ma J, Yin C, Ma S, et al.Shensong Yangxin capsule reduces atrial fibrillation susceptibility by inhibiting atrial fibrosis in rats with post-myocardial infarction heart failure[J].Drug Des Devel Ther2018(12):3407-3418.DOI:10.2147/DDDT.S182834.
[43]
Ma S, Ma J, Guo L, et al.Tongguan capsule-derived herb reduces susceptibility to atrial fibrillation by inhibiting left atrial fibrosis via modulating cardiac fibroblasts[J].J Cell Mol Med201923(2):1197-1210.DOI:10.1111/jcmm.14022.
[44]
Yang Y, Li J, Rao T, et al.The role and mechanism of hyperoside against myocardial infarction in mice by regulating autophagy via NLRP1 inflammation pathway[J].J Ethnopharmacol2021(276):114187.DOI:10.1016/j.jep.2021.114187.
[45]
Tan Z, Jiang X, Zhou W, et al.Taohong siwu decoction attenuates myocardial fibrosis by inhibiting fibrosis proliferation and collagen deposition via TGFBR1 signaling pathway[J].J Ethnopharmacol2021(270):113838.DOI:10.1016/j.jep.2021.113838.
[46]
Li X, Xiang N, Wang Z.Ginsenoside Rg2 attenuates myocardial fibrosis and improves cardiac function after myocardial infarction via AKT signaling pathway[J].Biosci Biotechnol Biochem202084(11):2199-2206.DOI:10.1080/09168451.2020.1793292.
[47]
Li M, Tan H, Gao T, et al.Gypensapogenin I ameliorates isoproterenol (ISO)-induced myocardial damage through regulating the TLR4/NF-κB/NLRP3 pathway[J].Molecules202227(16).DOI:10.3390/molecules27165298.
[48]
Yang J, Wang B, Li N, et al.Salvia miltiorrhiza and carthamus tinctorius extract prevents cardiac fibrosis and dysfunction after myocardial infarction by epigenetically inhibiting Smad3 expression[J].Evid Based Complement Alternat Med2019(2019):6479136.DOI:10.1155/2019/6479136.
[49]
Ni T, Huang X, Pan S, et al.Dihydrolycorine attenuates cardiac fibrosis and dysfunction by downregulating runx1 following myocardial infarction[J].Oxid Med Cell Longev2021(2021):8528239.DOI:10.1155/2021/8528239.
[50]
Zhang G, Zhang X, Li D, et al.Long-term oral atazanavir attenuates myocardial infarction-induced cardiac fibrosis[J].Eur J Pharmacol2018(828):97-102.DOI:10.1016/j.ejphar.2018.03.041.
[51]
Chen P, Zhou D, Liu Y, et al.Peiminine inhibits myocardial injury and fibrosis after myocardial infarction in rats by regulating mitogen-activated protein kinase pathway[J].Korean J Physiol Pharmacol202226(2):87-94.DOI:10.4196/kjpp.2022.26.2.87.
[52]
Gallet R, Dawkins J, Valle J, et al.Exosomes secreted by cardiosphere-derived cells reduce scarring,attenuate adverse remodelling,and improve function in acute and chronic porcine myocardial infarction[J].Eur Heart J201738(3):201-211.DOI:10.1093/eurheartj/ehw240.
[53]
Jung M, Ma YG, Iyer RP, et al.IL-10 improves cardiac remodeling after myocardial infarction by stimulating M2 macrophage polarization and fibroblast activation[J].Basic Res Cardiol2017112(3):33.DOI:10.1007/S00395-017-0622-5.
[1] 薛艳玲, 马小静, 谢姝瑞, 何俊, 夏娟, 何亚峰. 左心声学造影在急性心肌梗死合并室间隔穿孔中的应用价值[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1036-1039.
[2] 卢凯, 王香云. 急性心肌梗死后心力衰竭患者血清微小RNA-200a表达及临床意义[J]. 中华危重症医学杂志(电子版), 2023, 16(06): 488-491.
[3] 张忆雪, 陈漠水, 张福伟, 郑颖, 孙定军, 叶青妃. 贝那普利通过下调心锚重复蛋白改善心肌梗死后心肌重塑[J]. 中华危重症医学杂志(电子版), 2023, 16(04): 292-299.
[4] 程宇欣, 张伟, 孔维诗, 孙瑜. 胶原蛋白敷料在创面修复中应用的研究进展[J]. 中华损伤与修复杂志(电子版), 2024, 19(01): 73-77.
[5] 何雪锋, 赵世新, 李珮珊, 刘恒登, 谢举临. 卡奴卡叶提取物通过增强真皮成纤维细胞功能促进大鼠创面修复的效果观察[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 405-412.
[6] 张升敏, 黄健斌, 陈亮, 马克强. Ⅰ、Ⅲ型胶原蛋白在成人腹股沟斜疝及直疝患者腹横筋膜和疝囊的表达[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(05): 516-521.
[7] 范博洋, 王宁, 张骞, 王贵玉. 结直肠癌转移调控的环状RNA分子机制研究进展[J]. 中华结直肠疾病电子杂志, 2023, 12(05): 426-430.
[8] 李思佳, 苏晓乐, 王利华. 通过抑制Wnt/β-catenin信号通路延缓肾间质纤维化研究进展[J]. 中华肾病研究电子杂志, 2023, 12(04): 224-228.
[9] 王志斌, 周小瑞, 底煜. 长链非编码核糖核酸心肌梗死转录本在视网膜缺血性疾病中的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(05): 296-300.
[10] 朱泽超, 杨新宇, 李侑埕, 潘鹏宇, 梁国标. 染料木黄酮通过SIRT1/p53信号通路对蛛网膜下腔出血后早期脑损伤的作用[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 261-269.
[11] 秦维, 王丹, 孙玉, 霍玉玲, 祝素平, 郑艳丽, 薛瑞. 血清层粘连蛋白、Ⅳ型胶原蛋白对代偿期肝硬化食管胃静脉曲张出血的预测价值[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 447-451.
[12] 刘世航, 周帅, 秦士吉, 程晓东, 丁凯, 王海程, 李超, 卢军丽, 吕红芝. 矿化胶原在骨缺损治疗中应用的研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(12): 1320-1324.
[13] 张生怀. 急性心肌梗死致心源性猝死救治分析一例[J]. 中华临床医师杂志(电子版), 2023, 17(08): 924-926.
[14] 杨思雨, 杨晶晶, 张平, 刘巧, 吴杰, 黄香金, 王怡洁, 付景云. 瘦素通过α1肾上腺素受体介导CaMKKβ-AMPKα信号通路在GT1-7细胞系中的作用[J]. 中华临床医师杂志(电子版), 2023, 17(05): 569-574.
[15] 何敏, 黄桢. 加减知柏地黄丸对特发性中枢性性早熟小鼠骨细胞骨形成蛋白-Smads信号通路的影响[J]. 中华临床实验室管理电子杂志, 2023, 11(04): 214-220.
阅读次数
全文


摘要