切换至 "中华医学电子期刊资源库"

中华诊断学电子杂志 ›› 2024, Vol. 12 ›› Issue (03) : 193 -198. doi: 10.3877/cma.j.issn.2095-655X.2024.03.010

综述

细胞间相互作用及代谢微环境在动脉钙化中的作用机制研究进展
冯盼1, 梁秋华2,()   
  1. 1. 272067 济宁医学院临床医学院
    2. 272029 济宁医学院附属医院内分泌遗传代谢科
  • 收稿日期:2024-02-24 出版日期:2024-08-26
  • 通信作者: 梁秋华
  • 基金资助:
    山东省自然科学基金(ZR2019MH087)

Research progress on the mechanism of intercellular communication and metabolic microenvironment in arterial calcification

Pan Feng1, Qiuhua Liang2,()   

  1. 1. College of Clinical Medicine, Jining Medical University, Jining 272067, China
    2. Department of Endocrinology, Genetics and Metabolism, Affiliated Hospital of Jining Medical University, Jining 272029 China
  • Received:2024-02-24 Published:2024-08-26
  • Corresponding author: Qiuhua Liang
引用本文:

冯盼, 梁秋华. 细胞间相互作用及代谢微环境在动脉钙化中的作用机制研究进展[J]. 中华诊断学电子杂志, 2024, 12(03): 193-198.

Pan Feng, Qiuhua Liang. Research progress on the mechanism of intercellular communication and metabolic microenvironment in arterial calcification[J]. Chinese Journal of Diagnostics(Electronic Edition), 2024, 12(03): 193-198.

动脉钙化是一种主要表现为钙磷等矿物质易位沉积于动脉管壁的病理过程,常继发于多种疾病,细胞间通信及相互作用在动脉钙化的发展过程中发挥着重要作用。血管平滑肌细胞表型转换尽管被认为是动脉钙化的主要特征,但导致其收缩表型丧失和驱使钙化表型转化的机制目前还不完全清楚。本综述旨在总结近年来血管平滑肌细胞表型转换及与不同细胞之间相互作用和体内代谢微环境在动脉钙化发展研究中的最新进展,以进一步了解动脉钙化的相关机制。

Arterial calcification is a pathological process characterized by the translocation of minerals such as calcium and phosphorus onto the arterial wall, which is often secondary to a variety of diseases. Intercellular communication and interaction play an important role in the development of arterial calcification. Although the phenotypic transition of vassular smooth muscle cells is considered to be a main feature of arterial calcification, the mechanism leading to the loss of contractile phenotype and driving the phenotypic transformation of calcification is not fully understood. The purpose of this review is to summarize the latest progress in the study of phenotypic transformation of vascular smooth muscle cells, their communication with different cells, and the metabolic microenvironment in vivo in the development of arterial calcification, so as to further understand the mechanism of arterial calcification.

表1 不同细胞来源的囊泡对动脉钙化的作用
[1]
Li XLiu AXie C,et al.The transcription factor GATA6 accelerates vascular smooth muscle cell senescence-related arterial calcification by counteracting the role of anti-aging factor SIRT6 and impeding DNA damage repair[J].Kidney Int2024105(1):115-131.DOI:10.1016/j.kint.2023.09.028.
[2]
Petsophonsakul PBurgmaier MWillems B,et al.Nicotine promotes vascular calcification via intracellular Ca2+-mediated,Nox5-induced oxidative stress,and extracellular vesicle release in vascular smooth muscle cells[J].Cardiovasc Res2022118(9):2196-2210.DOI:10.1093/cvr/cvab244.
[3]
Reynolds JL, Joannides AJ, Skepper JN,et al.Human vascular smooth muscle cells undergo vesicle-mediated calcification in response to changes in extracellular calcium and phosphate concentrations:a potential mechanism for accelerated vascular calcification in ESRD[J].J Am Soc Nephrol200415(11):2857-2867.DOI:10.1097/01.ASN.0000141960.01035.28.
[4]
Hutcheson JDGoettsch CBertazzo S,et al.Genesis and growth of extracellular-vesicle-derived microcalcification in atherosclerotic plaques[J].Nat Mater201615(3):335-343.DOI:10.1038/nmat4519.
[5]
Bäck MMichel JB.From organic and inorganic phosphates to valvular and vascular calcifications[J].Cardiovasc Res2021117(9):2016-2029.DOI:10.1093/cvr/cvab038.
[6]
Liu QLuo YZhao Y,et al.Nano-hydroxyapatite accelerates vascular calcification via lysosome impairment and autophagy dysfunction in smooth muscle cells[J].Bioact Mater2022(8):478-493.DOI:10.1016/j.bioactmat.2021.06.004.
[7]
Lanzer PHannan FMLanzer JD,et al.Medial arterial calcification:JACC state-of-the-art review[J].J Am Coll Cardiol202178(11):1145-1165.DOI:10.1016/j.jacc.2021.06.049.
[8]
Kraler SBlaser MCAikawa E,et al.Calcific aortic valve disease: from molecular and cellular mechanisms to medical therapy[J].Eur Heart J202243(7):683-697.DOI:10.1093/eurheartj/ehab757.
[9]
Crescitelli RLässer CLötvall J.Isolation and characterization of extracellular vesicle subpopulations from tissues[J].Nat Protoc202116(3):1548-1580.DOI:10.1038/s41596-020-00466-1.
[10]
Koide TMandai SKitaoka R,et al.Circulating extracellular vesicle-propagated microRNA signature as a vascular calcification factor in chronic kidney disease[J].Circ Res2023132(4):415-431.DOI:10.1161/CIRCRESAHA.122.321939.
[11]
Rykaczewska UZhao QSaliba-Gustafsson P,et al.Plaque evaluation by ultrasound and transcriptomics reveals BCLAF1 as a regulator of smooth muscle cell lipid transdifferentiation in atherosclerosis[J].Arterioscler Thromb Vasc Biol202242(5):659-676.DOI:10.1161/ATVBAHA.121.317018.
[12]
Wirka RCWagh DPaik DT,et al.Atheroprotective roles of smooth muscle cell phenotypic modulation and the TCF21 disease gene as revealed by single-cell analysis[J].Nat Med201925(8):1280-1289.DOI:10.1038/s41591-019-0512-5.
[13]
Furmanik MChatrou Mvan Gorp R,et al.Reactive oxygen-forming Nox5 links vascular smooth muscle cell phenotypic switching and extracellular vesicle-mediated vascular calcification[J].Circ Res2020127(7):911-927.DOI:10.1161/CIRCRESAHA.119.316159.
[14]
Pan WLiang JWTang HL,et al.Differentially expressed microRNA profiles in exosomes from vascular smooth muscle cells associated with coronary artery calcification[J].Int J Biochem Cell Biol2020(118):105645.DOI:10.1016/j.biocel.2019.105645.
[15]
Yu HDouglas HFWathieu D,et al.Diabetes is accompanied by secretion of pro-atherosclerotic exosomes from vascular smooth muscle cells[J].Cardiovasc Diabetol202322(1):112.DOI:10.1186/s12933-023-01833-4.
[16]
Li ZXia HSharp TR,et al.Hydrogen sulfide modulates endothelial-mesenchymal transition in heart failure[J].Circ Res2023132(2):154-166.DOI:10.1161/CIRCRESAHA.122.321326.
[17]
Feenstra LKutikhin AGShishkova DK,et al.Calciprotein particles induce endothelial dysfunction by impairing endothelial nitric oxide metabolism[J].Arterioscler Thromb Vasc Biol202343(3):443-455.DOI:10.1161/ATVBAHA.122.318420.
[18]
Bouabdallah JZibara KIssa H,et al.Endothelial cells exposed to phosphate and indoxyl sulphate promote vascular calcification through interleukin-8 secretion[J].Nephrol Dial Transplant201934(7):1125-1134.DOI:10.1093/ndt/gfy325.
[19]
Zhao XKZhu MMWang SN,et al.Transcription factor 21 accelerates vascular calcification in mice by activating the IL-6/STAT3 signaling pathway and the interplay between VSMCs and ECs[J].Acta Pharmacol Sin202344(8):1625-1636.DOI:10.1038/s41401-023-01077-8.
[20]
Han XSakamoto NTomita N,et al.Influence of TGF-β1 expression in endothelial cells on smooth muscle cell phenotypes and MMP production under shear stress in a co-culture model[J].Cytotechnology201971(2):489-496.DOI:10.1007/s10616-018-0268-7.
[21]
Rukov JLGravesen EMace ML,et al.Effect of chronic uremia on the transcriptional profile of the calcified aorta analyzed by RNA sequencing[J].Am J Physiol Renal Physiol2016310(6):F477-F491.DOI:10.1152/ajprenal.00472.2015.
[22]
Chang XY, Hao JB, Wang XZ, et al. The role of AIF-1 in the aldosterone-induced vascular calcification related to chronic kidney disease:evidence from mice model and cell co-culture model[J].Front Endocrinol (Lausanne)2022(13):917356.DOI:10.3389/fendo.2022.917356.
[23]
Guo BShan SKXu F,et al.Protective role of small extracellular vesicles derived from HUVECs treated with AGEs in diabetic vascular calcification[J].J Nanobiotechnology202220(1):334.DOI:10.1186/s12951-022-01529-z.
[24]
Lin XLi SWang YJ,et al.Exosomal Notch3 from high glucose-stimulated endothelial cells regulates vascular smooth muscle cells calcification/aging[J].Life Sci2019(232):116582.DOI:10.1016/j.lfs.2019.116582.
[25]
Freise CQuerfeld ULudwig A,et al.Uraemic extracellular vesicles augment osteogenic transdifferentiation of vascular smooth muscle cells via enhanced AKT signalling and PiT-1 expression[J].J Cell Mol Med202125(12):5602-5614.DOI:10.1111/jcmm.16572.
[26]
Qin ZLi YPLi JM,et al.Exosomal STAT1 derived from high phosphorus-stimulated vascular endothelial cells induces vascular smooth muscle cell calcification via the Wnt/β-catenin signaling pathway[J].Int J Mol Med202250(6):139.DOI:10.3892/ijmm.2022.5195.
[27]
Lin XShan SKXu F,et al.The crosstalk between endothelial cells and vascular smooth muscle cells aggravates high phosphorus-induced arterial calcification[J].Cell Death Dis202213(7):650.DOI:10.1038/s41419-022-05064-5.
[28]
Sun JXChang TFLi MH,et al.SNAI1,an endothelial-mesenchymal transition transcription factor,promotes the early phase of ocular neovascularization[J].Angiogenesis201821(3):635-652.DOI:10.1007/s10456-018-9614-9.
[29]
Sánchez-Duffhues G, García de Vinusea A, van de Pol V, et al.Inflammation induces endothelial-to-mesenchymal transition and promotes vascular calcification through downregulation of BMPR2[J].J Pathol2019247(3):333-346.DOI:10.1002/path.5193.
[30]
Deng GRZhang LYWang CL,et al.AGEs-RAGE axis causes endothelial-to-mesenchymal transition in early calcific aortic valve disease via TGF-β1 and BMPR2 signaling[J].Exp Gerontol2020(141):111088.DOI:10.1016/j.exger.2020.111088.
[31]
Liang GZWang SPShao JC,et al.Tenascin-X mediates flow-induced suppression of endMT and atherosclerosis[J].Circ Res2022130(11):1647-1659.DOI:10.1161/CIRCRESAHA.121.320694.
[32]
Zhu XLWang YYSoaita I,et al. Acetate controls endothelial-to-mesenchymal transition[J].Cell Metab202335(7):1163-1178.DOI:10.1016/j.cmet.2023.05.010.
[33]
Zhao HYZhang YYXing T,et al.M2 macrophages,but not M1 macrophages,support megakaryopoiesis by upregulating PI3K-AKT pathway activity[J].Signal Transduct Target Ther20216(1):234.DOI:10.1038/s41392-021-00627-y.
[34]
Sakamoto AKawakami RMori M,et al.CD163+ macrophages restrain vascular calcification,promoting the development of high-risk plaque[J].JCI Insight20238(5):e154922.DOI:10.1172/jci.insight.154922.
[35]
Basatemur GLJørgensen HFClarke M,et al.Vascular smooth muscle cells in atherosclerosis[J].Nat Rev Cardiol201916(12):727-744.DOI:10.1038/s41569-019-0227-9.
[36]
Kawakami R, Katsuki S, Travers R, et al. S100A9-RAGE axis accelerates formation of macrophage-mediated extracellular vesicle microcalcification in diabetes mellitus[J].Arterioscler Thromb Vasc Biol202040(8):1838-1853.DOI:10.1161/ATVBAHA.118.314087.
[37]
Cao JSChen CChen Q,et al.Extracellular vesicle miR-32 derived from macrophage promotes arterial calcification in mice with type 2 diabetes via inhibiting VSMC autophagy[J].J Transl Med202220(1):307.DOI:10.1186/s12967-022-03502-8.
[38]
Li QZhang CLShi J,et al.High-phosphate-stimulated macrophage-derived exosomes promote vascular calcification via let-7b-5p/TGFBR1 axis in chronic kidney disease[J].Cells202212(1):161.DOI:10.3390/cells12010161.
[39]
Yaker LTebani ALesueur C,et al.Extracellular vesicles from LPS-treated macrophages aggravate smooth muscle cell calcification by propagating inflammation and oxidative stress[J].Front Cell Dev Biol2022(10):823450.DOI:10.3389/fcell.2022.823450.
[40]
Chinetti-Gbaguidi GDaoudi MRosa M,et al.Human alternative macrophages populate calcified areas of atherosclerotic lesions and display impaired RANKL-induced osteoclastic bone resorption activity[J].Circ Res2017121(1):19-30.DOI:10.1161/CIRCRESAHA.116.310262.
[41]
Jeong SLee BSJung SE,et al.A low concentration of citreoviridin prevents both intracellular calcium deposition in vascular smooth muscle cell and osteoclast activation in vitro[J].Molecules202328(4):1693.DOI:10.3390/molecules28041693.
[42]
Garimella RTague SEZhang JH,et al.Expression and synthesis of bone morphogenetic proteins by osteoclasts: a possible path to anabolic bone remodeling[J].J Histochem Cytochem200856(6):569-577.DOI:10.1369/jhc.2008.950394.
[43]
Sun ZZhang LLYin K,et al.SIRT3-and FAK-mediated acetylation-phosphorylation crosstalk of NFATc1 regulates Nε-carboxymethyl-lysine-induced vascular calcification in diabetes mellitus[J].Atherosclerosis2023(377):43-59.DOI:10.1016/j.atherosclerosis.2023.06.969.
[44]
Zheng MHShan SKLin X,et al.Vascular wall microenvironment: exosomes secreted by adventitial fibroblasts induced vascular calcification[J].J Nanobiotechnology202321(1):315.DOI:10.1186/s12951-023-02000-3.
[45]
Ning WLLi SHYang WG,et al.Blocking exosomal miRNA-153-3p derived from bone marrow mesenchymal stem cells ameliorates hypoxia-induced myocardial and microvascular damage by targeting the ANGPT1-mediated VEGF/PI3k/Akt/eNOS pathway[J].Cell Signal2021(77):109812.DOI:10.1016/j.cellsig.2020.109812.
[46]
Wang ZXLuo ZWLi FX,et al.Aged bone matrix-derived extracellular vesicles as a messenger for calcification paradox[J].Nat Commun202213(1):1453.DOI:10.1038/s41467-022-29191-x.
[47]
Liu YJGuo YBao SM,et al.Bone marrow mesenchymal stem cell-derived exosomal microRNA-381-3p alleviates vascular calcification in chronic kidney disease by targeting NFAT5[J].Cell Death Dis202213(3):278.DOI:10.1038/s41419-022-04703-1.
[48]
Luo FWGuo WKLiu WH.Exosomes derived from bone marrow mesenchymal stem cells inhibit human aortic vascular smooth muscle cells calcification via the miR-15a/15b/16/NFATc3/OCN axis[J].Biochem Biophys Res Commun2022(635):65-76.DOI:10.1016/j.bbrc.2022.09.076.
[49]
Bao WHYang WLSu CY,et al.Relationship between gut microbiota and vascular calcification in hemodialysis patients[J].Ren Fail202345(1):2148538.DOI:10.1080/0886022X.2022.2148538.
[50]
Liu JHChen CYLiu ZZ,et al.Extracellular vesicles from child gut microbiota enter into bone to preserve bone mass and strength[J].Adv Sci (Weinh)20218(9):2004831.DOI:10.1002/advs.202004831.
[51]
Zhang XL, Li YN, Yang PZ, et al. Trimethylamine-N-Oxide promotes vascular calcification through activation of NLRP3 (nucleotide-binding domain,leucine-rich-containing family,pyrin domain-containing-3) inflammasome and NF-κB (nuclear factor κB) signals[J].Arterioscler Thromb Vasc Biol202040(3):751-765.DOI:10.1161/ATVBAHA.119.313414.
[52]
Yan JLPan YBShao WM,et al.Beneficial effect of the short-chain fatty acid propionate on vascular calcification through intestinal microbiota remodelling[J].Microbiome202210(1):195.DOI:10.1186/s40168-022-01390-0.
[53]
Shi XYWu HFLiu YR,et al.Inhibiting vascular smooth muscle cell proliferation mediated by osteopontin via regulating gut microbial lipopolysaccharide:a novel mechanism for paeonol in atherosclerosis treatment[J].Front Pharmacol2022(13):936677.DOI:10.3389/fphar.2022.936677.
[54]
Sun XLZheng YXie LZ,et al.Autophagy reduces aortic calcification in diabetic mice by reducing matrix vesicle body-mediated IL-1β release[J].Exp Cell Res2023432(2):113803.DOI:10.1016/j.yexcr.2023.113803.
[55]
Wei JTLi ZHFan Y,et al.Lactobacillus rhamnosus GG aggravates vascular calcification in chronic kidney disease:a potential role for extracellular vesicles[J].Life Sci2023(331):122001.DOI:10.1016/j.lfs.2023.122001.
[56]
Li FXLiu JJXu F,et al.Cold exposure protects against medial arterial calcification development via autophagy[J].J Nanobiotechnology202321(1):226.DOI:10.1186/s12951-023-01985-1.
[1] 曹雯佳, 刘学兵, 罗安果, 钟释敏, 邓岚, 王玉琳, 李赵欢. 超声矢量血流成像对2型糖尿病患者颈动脉壁剪切应力的研究[J]. 中华医学超声杂志(电子版), 2024, 21(07): 709-717.
[2] 王秋莲, 张莹, 李春敏, 徐树明, 张玉奇. 胎儿主动脉弓部梗阻伴发复杂心内畸形的产前超声诊断及漏误诊分析[J]. 中华医学超声杂志(电子版), 2024, 21(07): 718-725.
[3] 马晓菊, 梁潇, 段云友, 袁丽君, 赵萍. NBAV脂质纳泡对ApoE -/-小鼠动脉粥样硬化病变的评估和干预[J]. 中华医学超声杂志(电子版), 2024, 21(06): 608-616.
[4] 罗刚, 泮思林, 孙玲玉, 李志新, 陈涛涛, 乔思波, 庞善臣. 一种新型语义网络分析模型对室间隔完整型肺动脉闭锁和危重肺动脉瓣狭窄胎儿右心发育不良程度的评价作用[J]. 中华医学超声杂志(电子版), 2024, 21(04): 377-383.
[5] 张盼盼, 赵博文, 潘美, 彭晓慧, 陈冉, 田园诗, 林仙方, 惠姗姗, 沈婷婷. 胎儿左心房后间隙指数在胎儿肺动脉瓣缺如综合征中的应用价值[J]. 中华医学超声杂志(电子版), 2024, 21(04): 391-398.
[6] 袁晓峰, 惠品晶, 颜燕红, 张炎, 蔡忻懿. 椎动脉椎间段血流动力学参数评估椎动脉颅内段狭窄性病变的效能及可行性研究[J]. 中华医学超声杂志(电子版), 2024, 21(04): 399-407.
[7] 温春泉, 陈欣, 尹凯, 赵筱卓, 张琮, 程琳, 陈辉. 旋肩胛动脉穿支皮瓣在烧伤后重度腋窝瘢痕挛缩畸形整形修复治疗中的应用[J]. 中华损伤与修复杂志(电子版), 2024, 19(04): 294-298.
[8] 徐楠, 杨云川, 周迟, 马翔, 鲁正, 崔培元. 脾动脉结扎在肝门胆管癌行大范围肝切除中的临床作用研究[J]. 中华普通外科学文献(电子版), 2024, 18(04): 271-274.
[9] 汤宏涛, 何坤. 中晚期肝细胞癌介入治疗的进展及前景[J]. 中华普通外科学文献(电子版), 2024, 18(04): 305-308.
[10] 兰运升, 赵梓竣. 腹腔镜下高位与低位结扎肠系膜下动脉对低位直肠癌患者的影响[J]. 中华普外科手术学杂志(电子版), 2024, 18(05): 551-553.
[11] 郭倩, 张晓峰, 张鹏, 苏文博. “四步法”清扫No.253淋巴结在保留LCA的直肠癌根治术中的研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(04): 411-414.
[12] 孙龙凤, 侯高峰, 王幼黎, 刘磊. 腹腔镜下右半结肠癌D3根治术中SMA或SMV入路的选择[J]. 中华普外科手术学杂志(电子版), 2024, 18(04): 438-441.
[13] 麦子结, 曾学晴, 张乾升, 刘永达. 输尿管软镜术后严重出血治疗的初步探索[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(04): 366-371.
[14] 臧书芹, 陈巧玲, 江思源, 朱晓明, 沈浮, 王颢, 张卫, 邵成伟. 基于直肠高分辨MRI的直肠侧系膜分析及其临床价值的研究[J]. 中华结直肠疾病电子杂志, 2024, 13(04): 312-320.
[15] 温绍敏, 王雅晳, 施依璐, 段莎莎, 云书荣, 张小杉. 靶向超声造影技术在动脉粥样硬化治疗中的应用进展[J]. 中华临床医师杂志(电子版), 2024, 18(05): 496-499.
阅读次数
全文


摘要