切换至 "中华医学电子期刊资源库"

中华诊断学电子杂志 ›› 2025, Vol. 13 ›› Issue (02) : 133 -139. doi: 10.3877/cma.j.issn.2095-655X.2025.02.011

综述

Wnt/β-连环素信号通路在中枢神经系统疾病中的研究进展
王思泽1, 王春梅2,()   
  1. 1. 272067 济宁医学院临床医学院(附属医院)
    2. 272067 济宁医学院神经生物学研究所
  • 收稿日期:2024-11-22 出版日期:2025-05-26
  • 通信作者: 王春梅
  • 基金资助:
    山东省自然科学基金(ZR2024MH080)山东省大学生创新训练计划项目(S202410443003)

Research progress of Wnt/β-catenin signaling pathway in central nervous system diseases

Size Wang1, Chunmei Wang2,()   

  1. 1. College of Clinical Medicine,Jining Medical University,Jining 272067, China
    2. Institute of Neurobiology,Jining Medical University,Jining 272067, China
  • Received:2024-11-22 Published:2025-05-26
  • Corresponding author: Chunmei Wang
引用本文:

王思泽, 王春梅. Wnt/β-连环素信号通路在中枢神经系统疾病中的研究进展[J/OL]. 中华诊断学电子杂志, 2025, 13(02): 133-139.

Size Wang, Chunmei Wang. Research progress of Wnt/β-catenin signaling pathway in central nervous system diseases[J/OL]. Chinese Journal of Diagnostics(Electronic Edition), 2025, 13(02): 133-139.

经典Wnt信号通路即Wnt/β-catenin信号通路,参与促胚胎及组织形成、神经功能整合等生理效应。随着研究中复杂通路结构网络的建立,Wnt/β-catenin通路在各类病理生理过程中的正向、负向调控机制逐渐被发现,不同配体产生的生物学效应不尽相同,包括神经保护作用、氧化应激和神经炎症调节、细胞自噬和凋亡等,广泛存在于诸如缺血性脑卒中、阿尔茨海默病、帕金森病等神经系统疾病的发生发展中。研究表明,Wnt/β-catenin信号通路的靶向调控在恢复神经生物学功能及治疗中枢神经系统疾病方面展现出显著潜力。本文主要对Wnt/β-catenin信号通路参与中枢神经系统疾病的研究进展进行综述。

The classical Wnt signaling pathway, namely Wnt/β-catenin signaling pathway, is involved in promoting embryo and tissue development, neural function integration and other physiological effects. With the establishment of the complex pathway structure network in the study, the positive and negative regulatory mechanisms of the Wnt/β-catenin pathway in various pathophysiological processes have been gradually discovered. The biological effects of distinct ligands vary significantly, including neuroprotective effects, oxidative stress and neuroinflammatory regulation, autophagy and apoptosis, etc. It is widely present in the occurrence and development of neurological diseases such as ischemic stroke,Alzheimer disease and Parkinson disease. Studies have shown that targeted regulation of the Wnt/β-catenin signaling pathway shows significant potential in restoring neurobiological function and treating central nervous system diseases. This review focuses on the research progress of Wnt/β-catenin signaling pathway involved in central nervous system diseases.

图1 Wnt/β-catenin信号通路图 注:当Wnt/β-catenin通路关闭时,AXIN、GSK-3α、CK-1α结合生成的复合物对于β-catenin蛋白的磷酸化起关键作用,β-TrCP识别磷酸化后的β-catenin并通过蛋白酶体进行泛素化降解;通路开启后,DVL定位于膜上,FZD-LRP 5/6共受体募集AXIN复合物,此过程抑制β-catenin磷酸化,使β-catenin可在核内聚集,介导相关靶基因的表达;β-catenin为β-连环素;AXIN为体轴抑制因子;GSK-3α为糖原合成激酶-3α;CK-1α为蛋白酪氨酸激酶-1α;β-TrCP为转导素重复序列包含蛋白;DVL为散乱蛋白;FZD为卷曲蛋白;LRP5/6为低密度脂蛋白受体相关蛋白5/6
[1]
Wang Y, Liang J, Fang Y, et al. Burden of common neurologic diseases in Asian countries,1990-2019:an analysis for the global burden of disease study 2019[J].Neurology,2023,100(21):e2141-e2154.DOI:10.1212/WNL.0000000000207218.
[2]
Scheltens P,De Strooper B,Kivipelto M,et al.Alzheimer′s disease[J].Lancet,2021,397(10284):1577-1590.DOI:10.1016/S0140-6736(20)32205-4.
[3]
Hayes MT.Parkinson′s disease and Parkinsonism[J].Am J Med,2019,132(7):802-807.DOI:10.1016/j.amjmed.2019.03.001.
[4]
DeLong JH,Ohashi SN,O′Connor KC,et al.Inflammatory responses after ischemic stroke[J].Semin Immunopathol,2022,44(5):625-648.DOI:10.1007/s00281-022-00943-7.
[5]
Ajoolabady A, Wang S, Kroemer G, et al. Targeting autophagy in ischemic stroke:from molecular mechanisms to clinical therapeutics[J].Pharmacol Ther,2021(225):107848.DOI:10.1016/j.pharmthera.2021.107848.
[6]
Eisenmann DM.Wnt signaling[J].WormBook,2005:1-17.DOI:10.1895/wormbook.1.7.1.
[7]
Semenov MV,Habas R,Macdonald BT,et al.SnapShot:noncanonical Wnt signaling pathways[J].Cell,2007,131(7):1378.DOI:10.1016/j.cell.2007.12.011.
[8]
Ma Q,Yu J,Zhang X,et al.Wnt/β-catenin signaling pathway-a versatile player in apoptosis and autophagy[J].Biochimie,2023(211):57-67.DOI:10.1016/j.biochi.2023.03.001.
[9]
Vallée A.Neuroinflammation in schizophrenia:the key role of the WNT/β-catenin pathway[J].Int J Mol Sci,2022,23(5).DOI:10.3390/ijms23052810.
[10]
MacDonald BT,He X.Frizzled and LRP5/6 receptors for Wnt/βcatenin signaling[J].Cold Spring Harb Perspect Biol,2012,4(12):a007880..DOI:10.1101/cshperspect.a007880.
[11]
Zeng X,Tamai K,Doble B,et al.A dual-kinase mechanism for Wnt co-receptor phosphorylation and activation[J].Nature,2005,438(7069):873-877.DOI:10.1038/nature04185.
[12]
Kafka A,Bašic'-Kinda S,Pec'ina-Ŝlaus N.The cellular story of dishevelleds[J].Croat Med J,2014,55(5):459-467.DOI:10.3325/cmj.2014.55.459.
[13]
Wang Z,Li Z,Ji H.Direct targeting of β-catenin in the Wnt signaling pathway:current progress and perspectives[J].Med Res Rev,2021,41(4):2109-2129.DOI:10.1002/med.21787.
[14]
Vallée A,Lecarpentier Y.Crosstalk between peroxisome proliferatoractivated receptor gamma and the canonical WNT/β-catenin pathway in chronic inflammation and oxidative stress during carcinogenesis[J].Front Immunol,2018(9):745.DOI:10.3389/fimmu.2018.00745.
[15]
Doumpas N,Lampart F,Robinson MD,et al.TCF/LEF dependent and independent transcriptional regulation of Wnt/β-catenin target genes[J].EMBO J,2019,38(2):e98873.DOI:10.15252/embj.201798873.
[16]
Joksimovic M,Awatramani R.Wnt/β-catenin signaling in midbrain dopaminergic neuron specification and neurogenesis[J].J Mol Cell Biol,2014,6(1):27-33.DOI:10.1093/jmcb/mjt043.
[17]
Lie DC,Colamarino SA,Song HJ,et al.Wnt signalling regulates adult hippocampal neurogenesis[J].Nature,2005,437(7063):1370-1375.DOI:10.1038/nature04108.
[18]
Joksimovic M, Patel M, Taketo MM, et al. Ectopic Wnt/betacatenin signaling induces neurogenesis in the spinal cord and hindbrain floor plate[J].PLoS One,2012,7(1):e30266.DOI:10.1371/journal.pone.0030266.
[19]
Nouri N,Patel MJ,Joksimovic M,et al.Excessive Wnt/beta-catenin signaling promotes midbrain floor plate neurogenesis,but results in vacillating dopamine progenitors[J].Mol Cell Neurosci,2015(68):131-142.DOI:10.1016/j.mcn.2015.07.002.
[20]
Harland R.Neural induction[J].Curr Opin Genet Dev,2000,10(4):357-362.DOI:10.1016/s0959-437x(00)00096-4.
[21]
Chizhikov VV,Millen KJ.Mechanisms of roof plate formation in the vertebrate CNS[J].Nat Rev Neurosci,2004,5(10):808-812.DOI:10.1038/nrn1520.
[22]
Li X,Peng Z,Long L,et al.Wnt4-modified NSC transplantation promotes functional recovery after spinal cord injury[J].FASEB J,2020,34(1):82-94.DOI:10.1096/fj.201901478RR.
[23]
Collu GM,Hidalgo-Sastre A,Brennan K.Wnt-Notch signalling crosstalk in development and disease[J].Cell Mol Life Sci,2014,71(18):3553-3567.DOI:10.1007/s00018-014-1644-x.
[24]
Muβmann C,Hübner R,Trilck M,et al.HES5 is a key mediator of Wnt-3a-induced neuronal differentiation[J].Stem Cells Dev,2014,23(12):1328-1339.DOI:10.1089/scd.2013.0557.
[25]
Kuwabara T,Hsieh J,Muotri A,et al.Wnt-mediated activation of NeuroD1 and retro-elements during adult neurogenesis[J].Nat Neurosci,2009,12(9):1097-1105.DOI:10.1038/nn.2360.
[26]
Endo Y,Beauchamp E,Woods D,et al.Wnt-3a and Dickkopf-1 stimulate neurite outgrowth in Ewing tumor cells via a Frizzled3-and c-Jun N-terminal kinase-dependent mechanism[J].Mol Cell Biol,2008,28(7):2368-2379.DOI:10.1128/MCB.01780-07.
[27]
Ciani L,Marzo A,Boyle K,et al.Wnt signalling tunes neurotransmitter release by directly targeting synaptotagmin-1[J].Nat Commun,2015(6):8302.DOI:10.1038/ncomms9302.
[28]
Ramos-Fernández E,Tapia-Rojas C,Ramírez VT,et al.Wnt-7a stimulates dendritic spine morphogenesis and PSD-95 expression through canonical signaling[J].Mol Neurobiol,2019,56(3):1870-1882.DOI:10.1007/s12035-018-1162-1.
[29]
Narvaes RF,Furini C.Role of Wnt signaling in synaptic plasticity and memory[J].Neurobiol Learn Mem,2022(187):107558.DOI:10.1016/j.nlm.2021.107558.
[30]
Álvarez-Ferradas C,Wellmann M,Morales K,et al.Wnt-5a induces the conversion of silent to functional synapses in the hippocampus[J].Front Mol Neurosci,2022(15):1024034.DOI:10.3389/fnmol.2022.1024034.
[31]
Cerpa W,Godoy JA,Alfaro I,et al.Wnt-7a modulates the synaptic vesicle cycle and synaptic transmission in hippocampal neurons[J].J Biol Chem,2008,283(9):5918-5927.DOI:10.1074/jbc.M705943200.
[32]
Ru W,Liu X,Bae C,et al.Microglia mediate HIV-1 gp120-induced synaptic degeneration in spinal pain neural Circuits[J].J Neurosci,2019,39(42):8408-8421.DOI:10.1523/JNEUROSCI.2851-18.2019.
[33]
Obermeier B,Daneman R,Ransohoff RM.Development,maintenance and disruption of the blood-brain barrier[J].Nat Med,2013,19(12):1584-1596.DOI:10.1038/nm.3407.
[34]
Fetsko AR,Sebo DJ,Taylor MR.Brain endothelial cells acquire blood-brain barrier properties in the absence of Vegf-dependent CNS angiogenesis[J].Dev Biol,2023(494):46-59.DOI:10.1016/j.ydbio.2022.11.007.
[35]
Kakogiannos N,Scalise AA,Martini E,et al.GPR126 is a specifier of blood-brain barrier formation in the mouse central nervous system[J].J Clin Invest,2024,134(15):e165368.DOI:10.1172/JCI165368.
[36]
Xie C,Wang Y,Wang J,et al.Perlecan improves blood spinal cord barrier repair through the integrin β1/ROCK/MLC pathway after spinal cord injury[J].Mol Neurobiol,2023,60(1):51-67.DOI:10.1007/s12035-022-03041-9.
[37]
Luo Y,Zhang Y,Feng Y,et al.Prenatal exposure to low doses of benzophenone-3 elicits disruption of cortical vasculature in fetuses through perturbations in Wnt/β-catenin signaling correlating with depression-like behavior in offspring mice[J].Toxicology,2024(509):153960.DOI:10.1016/j.tox.2024.153960.
[38]
Boyé K,Geraldo LH,Furtado J,et al.Endothelial Unc5B controls blood-brain barrier integrity[J].Nat Commun,2022,13(1):1169.DOI:10.1038/s41467-022-28785-9.
[39]
Manukjan N, Chau S, Caiment F, et al. Wnt7a decreases brain endothelial barrier function via β-catenin activation[J].Mol Neurobiol,2024,61(7):4854-4867.DOI:10.1007/s12035-023-03872-0.
[40]
GBD 2019 Stroke Collaborators. Global, regional, and national burden of stroke and its risk factors,1990-2019:a systematic analysis for the Global Burden of Disease Study 2019[J].Lancet Neurol,2021,20(10):795-820.DOI:10.1016/S1474-4422(21)00252-0.
[41]
Schölzke MN,Schwaninger M.Transcriptional regulation of neurogenesis:potential mechanisms in cerebral ischemia[J].J Mol Med(Berl),2007,85(6):577-588.DOI:10.1007/s00109-007-0196-z.
[42]
Li S,Li Y,Huang P,et al.Knockout of Rnf213 ameliorates cerebral ischemic-reperfusion injury by inhibiting neuronal apoptosis through the Akt/GSK-3β/β-catenin/Bcl-2 pathway[J].Neuroscience,2023(533):10-21.DOI:10.1016/j.neuroscience.2023.09.018.
[43]
Chen G,Rajkowska G,Du F,et al.Enhancement of hippocampal neurogenesis by lithium[J].J Neurochem,2000,75(4):1729-1734.DOI:10.1046/j.1471-4159.2000.0751729.x.
[44]
Kriska J,Janeckova L,Kirdajova D,et al.Wnt/β-catenin signaling promotes differentiation of ischemia-activated adult neural stem/progenitor cells to neuronal precursors[J].Front Neurosci,2021(15):628983.DOI:10.3389/fnins.2021.628983.
[45]
He W,Tian X,Lv M,et al.Liraglutide protects neurite outgrowth of cortical neurons under oxidative stress though activating the Wnt pathway[J].J Stroke Cerebrovasc Dis,2018,27(10):2696-2702.DOI:10.1016/j.jstrokecerebrovasdis.2018.05.039.
[46]
Feng X, Li M, Lin Z, et al. Tetramethylpyrazine promotes axonal remodeling and modulates microglial polarization via JAK2-STAT1/3 and GSK3-NFκB pathways in ischemic stroke[J].Neurochem Int,2023 (170):105607.DOI:10.1016/j.neuint.2023.105607.
[47]
Nadareishvili Z,Simpkins AN,Hitomi E,et al.Post-stroke bloodbrain barrier disruption and poor functional outcome in patients receiving thrombolytic therapy[J].Cerebrovasc Dis,2019,47(3-4):135-142.DOI:10.1159/000499666.
[48]
McMahon AP,Ichida JK.Repairing the blood-brain barrier[J].Science,2022,375(6582):715-716.DOI:10.1126/science.abn7921.
[49]
Ma B,Hottiger MO.Crosstalk between Wnt/β-catenin and NF-κB signaling pathway during inflammation[J].Front Immunol,2016(7):378.DOI:10.3389/fimmu.2016.00378.
[50]
Halleskog C,Dijksterhuis JP,Kilander MB,et al.Heterotrimeric G protein-dependent WNT-5A signaling to ERK1/2 mediates distinct aspects of microglia proinflammatory transformation[J].J Neuroinflammation,2012(9):111.DOI:10.1186/1742-2094-9-111.
[51]
Mobaderi T,Kazemnejad A,Salehi M.Exploring the impacts of risk factors on mortality patterns of global Alzheimer's disease and related dementias from 1990 to 2021[J].Sci Rep,2024,14(1):15583.DOI:10.1038/s41598-024-65887-4.
[52]
Soria Lopez JA,González HM,Léger GC.Alzheimer′s disease[J].Handb Clin Neurol,2019(167):231-255.DOI:10.1016/B978-0-12-804766-8.00013-3.
[53]
Song L,Oseid DE,Wells EA,et al.The interplay between GSK3β and Tau Ser262 phosphorylation during the progression of Tau pathology[J].Int J Mol Sci,2022,23(19):11610.DOI:10.3390/ijms231911610.
[54]
Ivashko-Pachima Y,Gozes I.NAP Protects against Tau hyperphosphorylation through GSK3[J].Curr Pharm Des,2018,24(33):3868-3877.DOI:10.2174/1381612824666181112105954.
[55]
Medunjanin S,Schleithoff L,Fiegehenn C,et al.GSK-3β controls NF-kappa B activity via IKKγ/NEMO[J].Sci Rep,2016(6):38553.DOI:10.1038/srep38553.
[56]
Hu M,Zheng M,Wang C,et al.Andrographolide derivative Andro-Ⅲ modulates neuroinflammation and attenuates neuropathological changes of Alzheimer′s disease via GSK-3β/NF-κB/CREB pathway[J].Eur J Pharmacol,2024(965):176305.DOI:10.1016/j.ejphar.2023.176305.
[57]
Yang Y,Wang L,Zhang C,et al.Ginsenoside Rg1 improves Alzheimer′s disease by regulating oxidative stress,apoptosis,and neuroinflammation through Wnt/GSK-3β/β-catenin signaling pathway[J].Chem Biol Drug Des,2022,99(6):884-896.DOI:10.1111/cbdd.14041.
[58]
Dubey T, Kushwaha P, Thulasiram HV, et al. Bacopa monnieri reduces Tau aggregation and Tau-mediated toxicity in cells[J].Int J Biol Macromol,2023(234):123171.DOI:10.1016/j.ijbiomac.2023.123171.
[59]
Li HL,Wang HH,Liu SJ,et al.Phosphorylation of tau antagonizes apoptosis by stabilizing beta-catenin,a mechanism involved in Alzheimer′s neurodegeneration[J].Proc Natl Acad Sci U S A,2007,104(9):3591-3596.DOI:10.1073/pnas.0609303104.
[60]
Xu T,Dong W,Liu J,et al.Disease burden of Parkinson′s disease in China and its provinces from 1990 to 2021:findings from the global burden of disease study 2021[J].Lancet Reg Health West Pac,2024(46):101078.DOI:10.1016/j.lanwpc.2024.101078.
[61]
Mahul-Mellier AL,Burtscher J,Maharjan N,et al.The process of Lewy body formation,rather than simply α-synuclein fibrillization,is one of the major drivers of neurodegeneration[J].Proc Natl Acad Sci U S A,2020,117(9):4971-4982.DOI:10.1073/pnas.1913904117.
[62]
Wakabayashi K,Tanji K,Odagiri S,et al.The Lewy body in Parkinson′s disease and related neurodegenerative disorders[J].Mol Neurobiol,2013,47(2):495-508.DOI:10.1007/s12035-012-8280-y.
[63]
程丽萍,王浩,车峰远,等.α-突触核蛋白通过抑制Wnt/β-catenin信号通路参与帕金森病发病机制[J].中风与神经疾病杂志,2019,36(1):10-14.
[64]
Huang YL,Zhang JN,Hou TZ,et al.Inhibition of Wnt/β-catenin signaling attenuates axonal degeneration in models of Parkinson′s disease[J].Neurochem Int,2022(159):105389.DOI:10.1016/j.neuint.2022.105389.
[65]
Geng X,Zou Y,Li J,et al.Mesenchymal stem cell exosomes rich in miR-23b-3p affect the Wnt signaling pathway and promote neuronal autophagy to alleviate PD symptoms[J].Neurosci Lett,2023(814):137437.DOI:10.1016/j.neulet.2023.137437.
[66]
Surmeier DJ.Determinants of dopaminergic neuron loss in Parkinson′s disease[J].FEBS J,2018,285(19):3657-3668.DOI:10.1111/febs.14607.
[67]
Samim Khan S,Janrao S,Srivastava S,et al.GSK-3β:an exuberating neuroinflammatory mediator in Parkinson′s disease[J].Biochem Pharmacol,2023(210):115496.DOI:10.1016/j.bcp.2023.115496.
[68]
Huang B,Liu J,Meng T,et al.Polydatin prevents lipopolysaccharide(LPS)-induced Parkinson's disease via regulation of the AKT/GSK3β-Nrf2/NF-κB signaling axis[J].Front Immunol,2018(9):2527.DOI:10.3389/fimmu.2018.02527.
[69]
L'Episcopo F,Tirolo C,Peruzzotti-Jametti L,et al.Neural stem cell grafts promote astroglia-driven neurorestoration in the aged Parkinsonian brain via Wnt/β-catenin signaling[J].Stem Cells,2018,36(8):1179-1197.DOI:10.1002/stem.2827.
[70]
Rawal N,Corti O,Sacchetti P,et al.Parkin protects dopaminergic neurons from excessive Wnt/beta-catenin signaling[J].Biochem Biophys Res Commun,2009,388(3):473-478.DOI:10.1016/j.bbrc.2009.07.014.
[1] 丁天宇, 白新娜, 王雅丽, 申婷, 张剑英. 口腔-神经疾病研究中的秀丽隐杆线虫阿尔茨海默病模型转录组特征分析[J/OL]. 中华口腔医学研究杂志(电子版), 2025, 19(03): 160-169.
[2] 孙顗淼, 张颖. 糖尿病患者急性脑梗死取栓术后发生对比剂肾病的影响因素及预测模型建立[J/OL]. 中华肾病研究电子杂志, 2024, 13(04): 188-194.
[3] 谢井伟, 王森, 王非, 郭永坤. STA-MCA血管搭桥术治疗烟雾病[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(05): 318-320.
[4] 张琳琳, 周建新. 重症神经:2024年度进展与展望[J/OL]. 中华重症医学电子杂志, 2025, 11(01): 11-16.
[5] 孙金兴, 林豪鹏, 贾俊恒, 李珍柯, 张超, 吴倩倩, 李新钢, 李卫国. 脑深部电刺激术在帕金森病中的临床应用与研究进展[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(06): 321-324.
[6] 张子豪, 景瑞, 赵浩. 血清NLRP3炎症小体及其下游炎症因子水平与大动脉粥样硬化型脑梗死患者溶栓后出血转化及预后的关系[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(06): 365-372.
[7] 杨森, 阙玉梅, 丁莉, 王艺瑾, 侯庆宇. Hcy和AD7c-NTP在阿尔茨海默病诊断中的临床应用[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(04): 208-212.
[8] 王颖, 杨焱焱, 牛雯晓, 李梦凡, 张金彪. 非体位性阻塞性睡眠呼吸暂停与认知功能障碍的相关性研究[J/OL]. 中华临床医师杂志(电子版), 2025, 19(02): 108-116.
[9] 袁紫嫣, 姚春玲, 石江伟. 基于大脑类淋巴系统清除机制探讨针刺治疗阿尔茨海默病的研究进展[J/OL]. 中华针灸电子杂志, 2025, 14(01): 28-33.
[10] 李悦, 豆小文, 纪翔, 李瑞, 刘婷, 莫红梅. 基于质谱法的胆汁酸和微量元素联合分析作为阿尔茨海默病预测标志物的应用[J/OL]. 中华临床实验室管理电子杂志, 2025, 13(01): 1-10.
[11] 刘霖, 张文欢, 宋雅茹, 姜云璐. Apelin-13 在阿尔茨海默病中的神经保护作用机制研究进展[J/OL]. 中华诊断学电子杂志, 2024, 12(04): 276-280.
[12] 苏建龙, 甄文剑, 孙宇婷, 郝进敏. CT 脑灌注在大面积脑梗死患者病情评估及手术方案设计中的应用[J/OL]. 中华脑血管病杂志(电子版), 2025, 19(02): 133-140.
[13] 张文怡, 江雪, 王子雨, 吴昊晟, 鱼盼盼, 郭彩霞. 心肌梗死合并脑梗死的抗栓治疗策略进展[J/OL]. 中华脑血管病杂志(电子版), 2025, 19(01): 58-62.
[14] 杨丽, 鲁雪, 杜志明, 王晓红. 依达拉奉注射液联合丁苯酞对急性高原脑梗死患者血清炎症因子、氧自由基及血管内皮功能的影响[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(06): 542-548.
[15] 克地尔牙·马合木提, 胡波, 杨琼, 闫素, 胡岚卿, 高沛沛, 姚恩生. 依达拉奉右莰醇对急性脑梗死后认知功能障碍的疗效观察[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(05): 459-466.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?