切换至 "中华医学电子期刊资源库"

中华诊断学电子杂志 ›› 2025, Vol. 13 ›› Issue (03) : 159 -164. doi: 10.3877/cma.j.issn.2095-655X.2025.03.003

生物医学技术

多组学技术在急性肺损伤中应用的研究进展
杨珂, 程梓荷, 王胜昱()   
  1. 710077 西安医学院第一附属医院呼吸与危重症医学科
  • 收稿日期:2025-04-10 出版日期:2025-08-26
  • 通信作者: 王胜昱
  • 基金资助:
    2023年度陕西省高等学校重点实验室(陕教函[2024]21号); 2023年陕西省高校青年创新团队(陕教函[2023]997号); 2024年陕西省卫生健康高层次人才(团队)培育计划项目(陕卫人函[2024]192号)

Research progress on application of multi-omics technologies in acute lung injury

Ke Yang, Zihe Cheng, Shengyu Wang()   

  1. Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Xi'an Medical University, Xi′an 710077, China
  • Received:2025-04-10 Published:2025-08-26
  • Corresponding author: Shengyu Wang
引用本文:

杨珂, 程梓荷, 王胜昱. 多组学技术在急性肺损伤中应用的研究进展[J/OL]. 中华诊断学电子杂志, 2025, 13(03): 159-164.

Ke Yang, Zihe Cheng, Shengyu Wang. Research progress on application of multi-omics technologies in acute lung injury[J/OL]. Chinese Journal of Diagnostics(Electronic Edition), 2025, 13(03): 159-164.

急性肺损伤是一类以呼吸衰竭为主要临床特征、由多种病因诱发的严重综合征,具有发病机制复杂和病死率高等特点。尽管传统的诊断和治疗方法已在临床应用,但其效果仍受诸多限制。近年来,以高通量测序为基础的多组学技术为解析急性肺损伤的分子机制、发现新的诊断标志物和潜在治疗靶点提供了深入见解。笔者系统综述了多组学技术在急性肺损伤研究中的最新进展,并总结其在推动疾病机制阐明、临床早期诊断及靶向治疗方面的优势和前景,为今后急性肺损伤的基础和转化研究提供理论依据。

Acute lung injury (ALI) is a critical syndrome characterized by respiratory failure and induced by diverse etiologies, with a complex pathogenesis and high mortality rate. Although conventional diagnostic and therapeutic approaches are widely used in clinical practice, their efficacy remains constrained by various factors. In recent years, multi-omics technologies based on high-throughput sequencing have provided significant insights into the molecular mechanisms of ALI, as well as the identification of novel diagnostic biomarkers and potential therapeutic targets. This article provides a comprehensive review of the latest advancements in multi-omics technologies in ALI research and summarizes their advantages and prospects in elucidating disease mechanisms, facilitating early clinical diagnosis, and promoting targeted therapy. This review aims to provide a theoretical foundation for future basic and translational research on ALI.

[1]
Xia LZhang CLv N,et al. AdMSC-derived exosomes alleviate acute lung injury via transferring mitochondrial component to improve homeostasis of alveolar macrophages[J].Theranostics202212(6):2928-2947.DOI:10.7150/thno.69533.
[2]
Mowery NTTerzian WTHNelson AC.Acute lung injury[J].Curr Probl Surg202057(5):100777.DOI:10.1016/j.cpsurg.2020.100777.
[3]
Mimitou EP, Lareau CA, Chen KY, et al. Scalable, multimodal profiling of chromatin accessibility,gene expression,and protein levels in single cells[J].Nat Biotechnol202139(10):1246-1258.DOI:10.1038/s41587-021-00927-2.
[4]
Kim DHKim YSSon NI,et al.Recent omics technologies and their emerging applications for personalised medicine[J].IET Syst Biol201711(3):87-98.DOI:10.1049/iet-syb.2016.0016.
[5]
Barabási AL, Gulbahce N, Loscalzo J. Network medicine: a network-based approach to human disease[J].Nat Rev Genet201112(1):56-68.DOI:10.1038/nrg2918.
[6]
Cao LZhang QMiao R,et al.Application of omics technology in the research on edible fungi[J].Curr Res Food Sci2023(6):100430.DOI:10.1016/j.crfs.2022.100430.
[7]
Yang X, Wang J, Liu W. Molecular markers of type Ⅱ alveolar epithelial cells in acute lung injury by bioinformatics analysis[J].Sci Rep202313(1):17797.DOI:10.1038/s41598-023-45129-9.
[8]
Nakagawa HFujita M.Whole genome sequencing analysis for cancer genomics and precision medicine[J].Cancer Sci2018109(3):513-522.DOI:10.1111/cas.13505.
[9]
Sen′kova AVSavin IABrenner EV,et al.Core genes involved in the regulation of acute lung injury and their association with COVID-19 and tumor progression:a bioinformatics and experimental study[J].PLoS One202116(11):e0260450.DOI:10.1371/journal.pone.0260450.
[10]
Tanaka TNarazaki MKishimoto T.IL-6 in inflammation,immunity,and disease[J].Cold Spring Harb Perspect Biol20146(10):a016295.DOI:10.1101/cshperspect.a016295.
[11]
Hirano T.IL-6 in inflammation,autoimmunity and cancer[J].Int Immunol202133(3):127-148.DOI:10.1093/intimm/dxaa078.
[12]
Wang SSong YXu F,et al.Identification and validation of ferroptosis-related genes in lipopolysaccharide-induced acute lung injury[J].Cell Signal2023(108):110698.DOI:10.1016/j.cellsig.2023.110698.
[13]
Shi ZZhu XGao W,et al.Extracorporeal membrane oxygenation in acute respiratory distress syndrome caused by elderly tuberculous meningitis:a case report and review of the literature[J].Front Med (Lausanne)2024(11):1457413.DOI:10.3389/fmed.2024.1457413.
[14]
Lv MZhu CZhu C,et al.Clinical values of metagenomic next-generation sequencing in patients with severe pneumonia:a systematic review and meta-analysis[J].Front in Cell Infect Microbiol2023(13):1106859.DOI:10.3389/fcimb.2023.1106859.
[15]
Lin XT, Liang SS, Wang QH, et al. Metagenomics approach the intestinal microbiome structure and function in the anti-H1N1 of a traditional chinese medicine acid polysaccharide[J].Microb Pathog2020(147):104351.DOI:10.1016/j.micpath.2020.104351.
[16]
Xu YZhu JFeng B,et al.Immunosuppressive effect of mesenchymal stem cells on lung and gut CD8(+) T cells in lipopolysaccharide-induced acute lung injury in mice[J].Cell Prolif202154(5):e13028.DOI:10.1111/cpr.13028.
[17]
Babu MSnyder M.Multi-omics profiling for health[J].Mol Cell Proteomics202322(6):100561.DOI:10.1016/j.mcpro.2023.100561.
[18]
Raghavan VKraft LMesny F,et al.A simple guide to de novo transcriptome assembly and annotation[J].Brief Bioinform202223(2):bbab563.DOI:10.1093/bib/bbab563.
[19]
Lu JSheng YQian W,et al.scRNA-seq data analysis method to improve analysis performance[J].IET Nanobiotechnol202317(3):246-256.DOI:10.1049/nbt2.12115.
[20]
Shen Y, Gong L, Xu F, et al. Insight into the lncRNA-mRNA co-expression profile and ceRNA network in lipopolysaccharide-induced acute lung injury[J].Curr Issues Mol Biol202345(7):6170-6189.DOI:10.3390/cimb45070389.
[21]
Song MZhang XGao Y,et al.RNA sequencing reveals the emerging role of bronchoalveolar lavage fluid exosome lncRNAs in acute lung injury[J].PeerJ2022(10):e13159.DOI:10.7717/peerj.13159.
[22]
Cui EZhang LPan X,et al.RNA-sequencing approach for exploring the therapeutic effect of umbilical cord mesenchymal stem/stromal cells on lipopolysaccharide-induced acute lung injury[J].Front in Immunol2022(13):1021102.DOI:10.3389/fimmu.2022.1021102.
[23]
Paris AJHayer KEOved JH,et al.STAT3-BDNF-TrkB signalling promotes alveolar epithelial regeneration after lung injury[J].Nat Cell Biol202022(10):1197-1210.DOI:10.1038/s41556-020-0569-x.
[24]
Cao C, Memete O, Shao Y, et al. Single-cell RNA-sequencing reveals epithelial cell signature of multiple subtypes in chemically induced acute lung injury[J].Int J Mol Sci202224(1):277.DOI:10.3390/ijms24010277.
[25]
李双,叶俏.特发性肺纤维化的组学研究进展[J].中国药理学与毒理学杂志202034(2):153-160.DOI:10.3867/j.issn.1000-3002.2020.02.009.
[26]
Makhmut AQin DFritzsche S,et al.A framework for ultra-low-input spatial tissue proteomics[J].Cell Syst202314(11):1002-1014.e5.DOI:10.1016/j.cels.2023.10.003.
[27]
Yang BGao ZLi Q S,et al.Proteomic analysis and identification reveal the anti-inflammatory mechanism of clofazimine on lipopolysaccharide-induced acute lung injury in mice[J].Inflamm Res202271(10-11):1327-1345.DOI:10.1007/s00011-022-01623-w.
[28]
Zheng QZhang YZhao Z,et al.Isorhynchophylline ameliorates paraquat-induced acute kidney injury by attenuating oxidative stress and mitochondrial damage via regulating toll-interacting expression[J].Toxicology and Applied Pharmacology2021(420):115521.DOI:10.1016/j.tapa.2021.1115521.
[29]
Li YXing JQin L,et al.Mechanism of isorhynchophylline in lipopolysaccharide-induced acute lung injury based on proteomic technology[J].Front.Pharmacol2024(15):1397498.DOI:10.3389/fphar.2024.1397498.
[30]
Shaikh SBNajar MAPrasad T,et al.Comparative protein profiling reveals the inhibitory role of curcumin on IL-17A mediated minichromosome maintenance (MCM) proteins as novel putative markers for acute lung injury in vivo[J].Biomed Pharmacother2021(141):111715.DOI:10.1016/j.biopha.2021.111715.
[31]
Hoseinnia SGhane MNorouzi J,et al.Mesenchymal stem cell and endothelial progenitor cells coinjection improves LPS-induced lung injury via Tie2 activation and downregulation of the TLR4/MyD88 pathway[J].J Cell Biochem2021122(12):1791-1804.DOI:10.1002/jcb.30133.
[32]
Wang H, Luo J, Li A, et al. Proteomic and phosphorylated proteomic landscape of injured lung in juvenile septic rats with therapeutic application of umbilical cord mesenchymal stem cells[J].Front in Immunol2022(13):1034821.DOI:10.3389/fimmu.2022.1034821.
[33]
Mao YChen YLi Y,et al.Deep spatial proteomics reveals region-specific features of severe COVID-19-related pulmonary injury[J].Cell Rep202443(2):113689.DOI:10.1016/j.celrep.2024.113689.
[34]
Bardanzellu FFanos V.How could metabolomics change pediatric health?[J].Ital J Pediatr202046(1):37.DOI:10.1186/s13052-020-0807-7.
[35]
Hu L, Liu J, Zhang W, et al. Functional metabolomics decipher biochemical functions and associated mechanisms underlie small-molecule metabolism[J].Mass Spectrom Rev202039(5-6):417-433.DOI:10.1002/mas.21611.
[36]
吴婧,于心悦,徐燕,等.阿霉素致肺损伤小鼠心脏毒性的代谢组学研究[J].中国药科大学学报202354(2):198-207.DOI:10.11665/j.issn.1000-5048.20221218001.
[37]
俞莉,叶苗云,陈少丹,等.基于肠道菌群和代谢组学研究桦褐孔菌多糖对急性肺损伤小鼠的保护作用[J].中国实验方剂学杂志202430(13):86-94.DOI:10.13422/j.cnki.syfjx.20240237.
[38]
Gao LYuan HXu E,et al.Toxicology of paraquat and pharmacology of the protective effect of 5-hydroxy-1-methylhydantoin on lung injury caused by paraquat based on metabolomics[J].Sci Rep202010(1):1790.DOI:10.1038/s41598-020-58599-y.
[39]
Chetty ABlekhman R.Multi-omic approaches for host-microbiome data integration[J].Gut Microbes202416(1):2297860.DOI:10.1080/19490976.2023.2297860.
[40]
El-Sayed A, Aleya L, Kamel M. Microbiota′s role in health and diseases[J].Environ Sci and Pollut Res Int202128(28):36967-36983.DOI:10.1007/s11356-021-14593-z.
[41]
Zheng LLiu CWang H,et al.Intact lung tissue and bronchoalveolar lavage fluid are both suitable for the evaluation of murine lung microbiome in acute lung injury[J].Microbiome202412(1):56.DOI:10.1186/s40168-024-01772-6.
[42]
Jiang L, Cun Y, Wang Q, et al. Predicting acute lung injury in infants with congenital heart disease after cardiopulmonary bypass by gut microbiota[J].Front Immunol2024(15):1362040.DOI:10.3389/fimmu.2024.1362040.
[43]
Wu XQin LSong M,et al.Metagenomics combined with untargeted metabolomics to study the mechanism of miRNA-150-5p on SiO(2)-induced acute lung injury[J].J Pharm Biomed Anal2025(252):116515.DOI:10.1016/j.jpba.2024.116515.
[44]
Lv LCui EHWang B,et al.Multiomics reveal human umbilical cord mesenchymal stem cells improving acute lung injury via the lung-gut axis[J].World J Stem Cells202315(9):908-930.DOI:10.4252/wjsc.v15.i9.908.
[45]
Wang GMa XHuang W,et al.Macrophage biomimetic nanoparticle-targeted functional extracellular vesicle micro-RNAs revealed via multiomics analysis alleviate sepsis-induced acute lung injury[J].J Nanobiotechnology202422(1):362.DOI:10.1186/s12951-024-02597-z.
[46]
Nie HLiu HShi Y,et al.Combined multi-omics analysis reveals oil mist particulate matter-induced lung injury in rats:pathological damage,proteomics,metabolic disturbances,and lung dysbiosis[J].Ecotoxicol Environ Saf2022(241):113759.DOI:10.1016/j.ecoenv.2022.113759.
[47]
Lu F, Huang T, Chen R, et al. Multi-omics analysis reveals the interplay between pulmonary microbiome and host in immunocompromised patients with sepsis-induced acute lung injury[J].Microbiol Spectr202412(12):e0142424.DOI:10.1128/spectrum.01424-24.
[1] 房昊宇, 王筱, 张安伟, 尚丹丹, 俞炯, 曹红翠. 基于粪便代谢组学分析间充质干细胞治疗克罗恩病小鼠的有效性生物标志物[J/OL]. 中华危重症医学杂志(电子版), 2025, 18(02): 98-104.
[2] 郭瑞铭, 邱伟, 房付春. 单细胞RNA测序技术的发展及其在牙周炎研究中的应用与展望[J/OL]. 中华口腔医学研究杂志(电子版), 2025, 19(02): 75-83.
[3] 赵才林, 向青, 钱航, 施雯, 邱凌霄, 王斌. 基于生物信息学解析急性肺损伤/急性呼吸窘迫综合征铁死亡枢纽基因及其与免疫分型的关系[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(04): 503-509.
[4] 郭亚文, 胡巧, 黄朝旺, 张静, 王丹, 赵鹏, 陈晓龙, 胡明冬. 基于转录组学老年细菌性肺炎差异miRNAs表达的分析[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(04): 521-526.
[5] 田学, 魏东坡, 孟潇潇, 谢晖, 王瑞兰. 生物信息学筛选相关肺纤维化诊断的生物标志物研究[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(04): 534-539.
[6] 谭宜, 许新才, 万秋风, 曹博威, 李春兴, 郭杨超. 麦冬皂苷D对急性肺损伤和肠黏膜屏障损伤的保护作用[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(04): 527-533.
[7] 杨春, 游洋伟, 周宇, 林泽超, 刘亮, 袁堃. 白细胞介素-10 调节辅助性T 细胞17/调节性T 细胞对小鼠输血相关急性肺损伤的作用研究[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(03): 355-361.
[8] 王鹏森, 吴慧锋, 温建芳, 韦阳, 董龙浩, 刘博强, 李占, 石春锋, 雷晓栋, 吴雄雄. 脓毒症并发急性肺损伤血清miR-146a 的表达及与预后相关性分析[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(02): 241-245.
[9] 周长东, 岳洋, 李擎宇, 杨稳, 崔钰珂, 王升启, 王淑美, 郭靓. 基于代谢组学分析的双氢青蒿素抗流感病毒作用机制研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(03): 129-138.
[10] 方兴保, 庞国莲, 李月宏, 蔡艳. 基于多组学分析MCAM在肝癌中表达及其与生存预后和免疫细胞浸润的关系[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(05): 716-724.
[11] 王飞, 张凯, 姚占胜. 一种信号通路水平结直肠癌细胞系选择新视角探讨[J/OL]. 中华结直肠疾病电子杂志, 2025, 14(02): 179-183.
[12] 张泽瀚, 费晓炜, 吕伟豪, 蔡敏, 庄茁, 王化宁, 费舟. 创伤后应激障碍的生物标志物研究进展[J/OL]. 中华神经创伤外科电子杂志, 2025, 11(03): 185-191.
[13] 张衡, 施歌, 张泽, 高振轩, 杨文强, 王琦, 张黎. 血浆5-HT相关基因表达与免疫细胞丰度在糖尿病周围神经病中的作用研究[J/OL]. 中华脑科疾病与康复杂志(电子版), 2025, 15(02): 72-80.
[14] 王玉琳, 王中华, 刘子文, 吕梦鑫, 于源滋, 李涛, 胡锦华, 张小茜. 肝硬化消化道出血患者经颈静脉肝内门体分流术前后肠道微生态的宏基因组学分析[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(02): 135-143.
[15] 游鹤, 王黎洲. 人工智能在介入放射学中的应用[J/OL]. 中华介入放射学电子杂志, 2025, 13(03): 257-262.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?