[1] |
Xia L, Zhang C, Lv N,et al. AdMSC-derived exosomes alleviate acute lung injury via transferring mitochondrial component to improve homeostasis of alveolar macrophages[J]. Theranostics, 2022, 12(6):2928-2947.DOI: 10.7150/thno.69533.
|
[2] |
|
[3] |
Mimitou EP, Lareau CA, Chen KY, et al. Scalable, multimodal profiling of chromatin accessibility,gene expression,and protein levels in single cells[J]. Nat Biotechnol, 2021, 39(10):1246-1258.DOI: 10.1038/s41587-021-00927-2.
|
[4] |
Kim DH, Kim YS, Son NI,et al.Recent omics technologies and their emerging applications for personalised medicine[J]. IET Syst Biol, 2017, 11(3):87-98.DOI: 10.1049/iet-syb.2016.0016.
|
[5] |
Barabási AL, Gulbahce N, Loscalzo J. Network medicine: a network-based approach to human disease[J]. Nat Rev Genet, 2011, 12(1):56-68.DOI: 10.1038/nrg2918.
|
[6] |
Cao L, Zhang Q, Miao R,et al.Application of omics technology in the research on edible fungi[J]. Curr Res Food Sci, 2023(6):100430.DOI: 10.1016/j.crfs.2022.100430.
|
[7] |
Yang X, Wang J, Liu W. Molecular markers of type Ⅱ alveolar epithelial cells in acute lung injury by bioinformatics analysis[J]. Sci Rep, 2023, 13(1):17797.DOI: 10.1038/s41598-023-45129-9.
|
[8] |
Nakagawa H, Fujita M.Whole genome sequencing analysis for cancer genomics and precision medicine[J]. Cancer Sci, 2018, 109(3):513-522.DOI: 10.1111/cas.13505.
|
[9] |
Sen′kova AV, Savin IA, Brenner EV,et al.Core genes involved in the regulation of acute lung injury and their association with COVID-19 and tumor progression:a bioinformatics and experimental study[J]. PLoS One, 2021, 16(11):e0260450.DOI: 10.1371/journal.pone.0260450.
|
[10] |
Tanaka T, Narazaki M, Kishimoto T.IL-6 in inflammation,immunity,and disease[J]. Cold Spring Harb Perspect Biol, 2014, 6(10):a016295.DOI: 10.1101/cshperspect.a016295.
|
[11] |
Hirano T.IL-6 in inflammation,autoimmunity and cancer[J]. Int Immunol, 2021, 33(3):127-148.DOI: 10.1093/intimm/dxaa078.
|
[12] |
Wang S, Song Y, Xu F,et al.Identification and validation of ferroptosis-related genes in lipopolysaccharide-induced acute lung injury[J]. Cell Signal, 2023(108):110698.DOI: 10.1016/j.cellsig.2023.110698.
|
[13] |
Shi Z, Zhu X, Gao W,et al.Extracorporeal membrane oxygenation in acute respiratory distress syndrome caused by elderly tuberculous meningitis:a case report and review of the literature[J]. Front Med (Lausanne), 2024(11):1457413.DOI: 10.3389/fmed.2024.1457413.
|
[14] |
Lv M, Zhu C, Zhu C,et al.Clinical values of metagenomic next-generation sequencing in patients with severe pneumonia:a systematic review and meta-analysis[J]. Front in Cell Infect Microbiol, 2023(13):1106859.DOI: 10.3389/fcimb.2023.1106859.
|
[15] |
Lin XT, Liang SS, Wang QH, et al. Metagenomics approach the intestinal microbiome structure and function in the anti-H1N1 of a traditional chinese medicine acid polysaccharide[J]. Microb Pathog, 2020(147):104351.DOI: 10.1016/j.micpath.2020.104351.
|
[16] |
Xu Y, Zhu J, Feng B,et al.Immunosuppressive effect of mesenchymal stem cells on lung and gut CD8(+) T cells in lipopolysaccharide-induced acute lung injury in mice[J]. Cell Prolif, 2021, 54(5):e13028.DOI: 10.1111/cpr.13028.
|
[17] |
|
[18] |
Raghavan V, Kraft L, Mesny F,et al.A simple guide to de novo transcriptome assembly and annotation[J]. Brief Bioinform, 2022, 23(2):bbab563.DOI: 10.1093/bib/bbab563.
|
[19] |
Lu J, Sheng Y, Qian W,et al.scRNA-seq data analysis method to improve analysis performance[J]. IET Nanobiotechnol, 2023, 17(3):246-256.DOI: 10.1049/nbt2.12115.
|
[20] |
Shen Y, Gong L, Xu F, et al. Insight into the lncRNA-mRNA co-expression profile and ceRNA network in lipopolysaccharide-induced acute lung injury[J]. Curr Issues Mol Biol, 2023, 45(7):6170-6189.DOI: 10.3390/cimb45070389.
|
[21] |
Song M, Zhang X, Gao Y,et al.RNA sequencing reveals the emerging role of bronchoalveolar lavage fluid exosome lncRNAs in acute lung injury[J]. PeerJ, 2022(10):e13159.DOI: 10.7717/peerj.13159.
|
[22] |
Cui E, Zhang L, Pan X,et al.RNA-sequencing approach for exploring the therapeutic effect of umbilical cord mesenchymal stem/stromal cells on lipopolysaccharide-induced acute lung injury[J]. Front in Immunol, 2022(13):1021102.DOI: 10.3389/fimmu.2022.1021102.
|
[23] |
Paris AJ, Hayer KE, Oved JH,et al.STAT3-BDNF-TrkB signalling promotes alveolar epithelial regeneration after lung injury[J]. Nat Cell Biol, 2020, 22(10):1197-1210.DOI: 10.1038/s41556-020-0569-x.
|
[24] |
Cao C, Memete O, Shao Y, et al. Single-cell RNA-sequencing reveals epithelial cell signature of multiple subtypes in chemically induced acute lung injury[J]. Int J Mol Sci, 2022, 24(1):277.DOI: 10.3390/ijms24010277.
|
[25] |
|
[26] |
Makhmut A, Qin D, Fritzsche S,et al.A framework for ultra-low-input spatial tissue proteomics[J]. Cell Syst, 2023, 14(11):1002-1014.e5.DOI: 10.1016/j.cels.2023.10.003.
|
[27] |
Yang B, Gao Z, Li Q S,et al.Proteomic analysis and identification reveal the anti-inflammatory mechanism of clofazimine on lipopolysaccharide-induced acute lung injury in mice[J]. Inflamm Res, 2022, 71(10-11):1327-1345.DOI: 10.1007/s00011-022-01623-w.
|
[28] |
Zheng Q, Zhang Y, Zhao Z,et al.Isorhynchophylline ameliorates paraquat-induced acute kidney injury by attenuating oxidative stress and mitochondrial damage via regulating toll-interacting expression[J]. Toxicology and Applied Pharmacology, 2021(420):115521.DOI: 10.1016/j.tapa.2021.1115521.
|
[29] |
Li Y, Xing J, Qin L,et al.Mechanism of isorhynchophylline in lipopolysaccharide-induced acute lung injury based on proteomic technology[J]. Front.Pharmacol, 2024(15):1397498.DOI: 10.3389/fphar.2024.1397498.
|
[30] |
Shaikh SB, Najar MA, Prasad T,et al.Comparative protein profiling reveals the inhibitory role of curcumin on IL-17A mediated minichromosome maintenance (MCM) proteins as novel putative markers for acute lung injury in vivo[J]. Biomed Pharmacother, 2021(141):111715.DOI: 10.1016/j.biopha.2021.111715.
|
[31] |
Hoseinnia S, Ghane M, Norouzi J,et al.Mesenchymal stem cell and endothelial progenitor cells coinjection improves LPS-induced lung injury via Tie2 activation and downregulation of the TLR4/MyD88 pathway[J]. J Cell Biochem, 2021, 122(12):1791-1804.DOI: 10.1002/jcb.30133.
|
[32] |
Wang H, Luo J, Li A, et al. Proteomic and phosphorylated proteomic landscape of injured lung in juvenile septic rats with therapeutic application of umbilical cord mesenchymal stem cells[J]. Front in Immunol, 2022(13):1034821.DOI: 10.3389/fimmu.2022.1034821.
|
[33] |
Mao Y, Chen Y, Li Y,et al.Deep spatial proteomics reveals region-specific features of severe COVID-19-related pulmonary injury[J]. Cell Rep, 2024, 43(2):113689.DOI: 10.1016/j.celrep.2024.113689.
|
[34] |
Bardanzellu F, Fanos V.How could metabolomics change pediatric health?[J]. Ital J Pediatr, 2020, 46(1):37.DOI: 10.1186/s13052-020-0807-7.
|
[35] |
Hu L, Liu J, Zhang W, et al. Functional metabolomics decipher biochemical functions and associated mechanisms underlie small-molecule metabolism[J]. Mass Spectrom Rev, 2020, 39(5-6):417-433.DOI: 10.1002/mas.21611.
|
[36] |
|
[37] |
|
[38] |
Gao L, Yuan H, Xu E,et al.Toxicology of paraquat and pharmacology of the protective effect of 5-hydroxy-1-methylhydantoin on lung injury caused by paraquat based on metabolomics[J]. Sci Rep, 2020, 10(1):1790.DOI: 10.1038/s41598-020-58599-y.
|
[39] |
Chetty A, Blekhman R.Multi-omic approaches for host-microbiome data integration[J]. Gut Microbes, 2024, 16(1):2297860.DOI: 10.1080/19490976.2023.2297860.
|
[40] |
El-Sayed A, Aleya L, Kamel M. Microbiota′s role in health and diseases[J]. Environ Sci and Pollut Res Int, 2021, 28(28):36967-36983.DOI: 10.1007/s11356-021-14593-z.
|
[41] |
Zheng L, Liu C, Wang H,et al.Intact lung tissue and bronchoalveolar lavage fluid are both suitable for the evaluation of murine lung microbiome in acute lung injury[J]. Microbiome, 2024, 12(1):56.DOI: 10.1186/s40168-024-01772-6.
|
[42] |
Jiang L, Cun Y, Wang Q, et al. Predicting acute lung injury in infants with congenital heart disease after cardiopulmonary bypass by gut microbiota[J]. Front Immunol, 2024(15):1362040.DOI: 10.3389/fimmu.2024.1362040.
|
[43] |
Wu X, Qin L, Song M,et al.Metagenomics combined with untargeted metabolomics to study the mechanism of miRNA-150-5p on SiO(2)-induced acute lung injury[J]. J Pharm Biomed Anal, 2025(252):116515.DOI: 10.1016/j.jpba.2024.116515.
|
[44] |
Lv L, Cui EH, Wang B,et al.Multiomics reveal human umbilical cord mesenchymal stem cells improving acute lung injury via the lung-gut axis[J]. World J Stem Cells, 2023, 15(9):908-930.DOI: 10.4252/wjsc.v15.i9.908.
|
[45] |
Wang G, Ma X, Huang W,et al.Macrophage biomimetic nanoparticle-targeted functional extracellular vesicle micro-RNAs revealed via multiomics analysis alleviate sepsis-induced acute lung injury[J]. J Nanobiotechnology, 2024, 22(1):362.DOI: 10.1186/s12951-024-02597-z.
|
[46] |
Nie H, Liu H, Shi Y,et al.Combined multi-omics analysis reveals oil mist particulate matter-induced lung injury in rats:pathological damage,proteomics,metabolic disturbances,and lung dysbiosis[J]. Ecotoxicol Environ Saf, 2022(241):113759.DOI: 10.1016/j.ecoenv.2022.113759.
|
[47] |
Lu F, Huang T, Chen R, et al. Multi-omics analysis reveals the interplay between pulmonary microbiome and host in immunocompromised patients with sepsis-induced acute lung injury[J]. Microbiol Spectr, 2024, 12(12):e0142424.DOI: 10.1128/spectrum.01424-24.
|