[1] |
|
[2] |
Sternburg EL, Karginov FV.Global approaches in studying RNA-binding protein interaction networks[J]. Trends Biochem Sci, 2020, 45(7):593-603.DOI: 10.1016/j.tibs.2020.03.005.
|
[3] |
Bampton A, Gittings LM, Fratta P, et al. The role of hnRNPs in frontotemporal dementia and amyotrophic lateral sclerosis[J]. Acta Neuropathol, 2020, 140(5):599-623.DOI: 10.1007/s00401-020-02203-0.
|
[4] |
Vohhodina J, Goehring LJ, Liu B,et al.BRCA1 binds TERRA RNA and suppresses R-Loop-based telomeric DNA damage[J]. Nat Commun, 2021, 12(1):3542.DOI: 10.1038/s41467-021-23716-6.
|
[5] |
Chen JK, Lin WL, Chen Z,et al.PARP-1-dependent recruitment of cold-inducible RNA-binding protein promotes double-strand break repair and genome stability[J]. Proc Natl Acad Sci U S A, 2018, 115(8):E1759-E1768.DOI: 10.1073/pnas.1713912115.
|
[6] |
Gadelha RB, Machado CB, Pessoa F,et al.The Role of WRAP53 in cell homeostasis and carcinogenesis onset[J]. Curr Issues Mol Biol, 2022, 44(11):5498-5515.DOI: 10.3390/cimb44110372.
|
[7] |
Mehta M, Raguraman R, Ramesh R,et al.RNA binding proteins (RBPs) and their role in DNA damage and radiation response in cancer[J]. Adv Drug Deliv Rev, 2022(191):114569.DOI: 10.1016/j.addr.2022.114569.
|
[8] |
Fu W, Ren H, Shou J, et al. Loss of NPPA-AS1 promotes heart regeneration by stabilizing SFPQ-NONO heteromer-induced DNA repair[J]. Basic Res Cardiol, 2022, 117(1):10.DOI: 10.1007/s00395-022-00921-y.
|
[9] |
Jang Y, Elsayed Z, Eki R,et al.Intrinsically disordered protein RBM14 plays a role in generation of RNA:DNA hybrids at double-strand break sites[J]. Proc Natl Acad Sci U S A, 2020, 117(10):5329-5338.DOI: 10.1073/pnas.1913280117.
|
[10] |
Yu J, Ge S.PRPF19 functions in DNA damage repair and gemcitabine sensitivity via regulating DDB1 in bladder cancer cells[J]. Cytotechnology, 2024, 76(1):85-96.DOI: 10.1007/s10616-023-00599-7.
|
[11] |
Wang Z, Qu M, Chang S, et al. Human RNA-binding protein HNRNPD interacts with and regulates the repair of deoxyribouridine in DNA[J]. Int J Biol Macromol, 2024, 262(Pt 1):129951.DOI: 10.1016/j.ijbiomac.2024.129951.
|
[12] |
Cui Y, Wen Y, Lv C,et al.Decreased RNA-binding protein IGF2BP2 downregulates NT5DC2,which suppresses cell proliferation,and induces cell cycle arrest and apoptosis in diffuse large B-cell lymphoma cells by regulating the p53 signaling pathway[J]. Mol Med Rep, 2022, 26(3):286.DOI: 10.3892/mmr.2022.12802.
|
[13] |
Lachiondo-Ortega S, Delgado TC, Baños-Jaime B,et al.Hu antigen R (HuR) protein structure,function and regulation in hepatobiliary tumors[J]. Cancers (Basel), 2022, 14(11):2666.DOI: 10.3390/cancers14112666.
|
[14] |
Jiang F, Hedaya OM, Khor E,et al.RNA binding protein PRRC2B mediates translation of specific mRNAs and regulates cell cycle progression[J]. Nucleic Acids Res, 2023, 51(11):5831-5846.DOI: 10.1093/nar/gkad322.
|
[15] |
Yang Z, Wang T, Wu D,et al.RNA N6-methyladenosine reader IGF2BP3 regulates cell cycle and angiogenesis in colon cancer[J]. J Exp Clin Cancer Res, 2020, 39(1):203.DOI: 10.1186/s13046-020-01714-8.
|
[16] |
Wu C, Chen W, Yu F, et al. Long Noncoding RNA HITTERS protects oral squamous cell carcinoma cells from endoplasmic reticulum stress-induced apoptosis via promoting MRE11-RAD50-NBS1 complex formation[J]. Adv Sci (Weinh), 2020, 7(22):2002747.DOI: 10.1002/advs.202002747.
|
[17] |
Wang D, Zhou Z, Wu E,et al.LRIK interacts with the Ku70-Ku80 heterodimer enhancing the efficiency of NHEJ repair[J]. Cell Death Differ, 2020, 27(12):3337-3353.DOI: 10.1038/s41418-020-0581-5.
|
[18] |
Thapar R, Wang JL, Hammel M,et al.Mechanism of efficient double-strand break repair by a long non-coding RNA[J]. Nucleic Acids Res, 2020, 48(19):10953-10972.DOI: 10.1093/nar/gkaa784.
|
[19] |
Mohapatra S, Winkle M, Ton AN,et al.The role of non-coding RNAs in chromosomal instability in cancer[J]. J Pharmacol Exp Ther, 2023, 384(1):10-19.DOI: 10.1124/jpet.122.001357.
|
[20] |
Zhao K, Wang X, Xue X,et al.A long noncoding RNA sensitizes genotoxic treatment by attenuating ATM activation and homologous recombination repair in cancers[J]. PLoS Biol, 2020, 18(3):e3000666.DOI: 10.1371/journal.pbio.3000666.
|
[21] |
Chen F, Xu W, Tang M,et al.hnRNPA2B1 deacetylation by SIRT6 restrains local transcription and safeguards genome stability[J]. Cell Death Differ, 2025, 32(3):382-396.DOI: 10.1038/s41418-024-01412-4.
|
[22] |
Sidali A, Teotia V, Solaiman NS,et al.AU-Rich element rna binding proteins:at the crossroads of post-transcriptional regulation and genome integrity[J]. Int J Mol Sci, 2021, 23(1):96.DOI: 10.3390/ijms23010096.
|
[23] |
Qu H, Shi X, Xu Y,et al.Mechanism of Musashi2 affecting radiosensitivity of lung cancer by modulating DNA damage repair[J]. MedComm (2020), 2024, 5(5):e548.DOI: 10.1002/mco2.548.
|
[24] |
Zhu H, Chen K, Chen Y, et al. RNA-binding protein ZCCHC4 promotes human cancer chemoresistance by disrupting DNA-damage-induced apoptosis[J]. Signal Transduct Target Ther, 2022, 7(1):240.DOI: 10.1038/s41392-022-01033-8.
|
[25] |
Cui JJ, Guo CX, Li J,et al.CSDE1 enhances genotoxic drug resistance in cancer by modulating RPA2 through CSDE1-eIF3a regulatory complex[J]. Drug Resist Updat, 2025(81):101249.DOI: 10.1016/j.drup.2025.101249.
|
[26] |
Gujar V, Li H, Paull TT,et al.Unraveling the nexus:genomic instability and metabolism in cancer[J]. Cell Rep, 2025, 44(4):115540.DOI: 10.1016/j.celrep.2025.115540.
|
[27] |
Majumder M, Chakraborty P, Mohan S,et al.HuR as a molecular target for cancer therapeutics and immune-related disorders[J]. Adv Drug Deliv Rev, 2022(188):114442.DOI: 10.1016/j.addr.2022.114442.
|
[28] |
Filcenkova L, Reisbitzer A, Joseph BP,et al.Application of a novel RNA-protein interaction assay to develop inhibitors blocking RNA-binding of the HuR protein[J]. Front Genet, 2025(16):1549304.DOI: 10.3389/fgene.2025.1549304.
|
[29] |
Allegri L, Baldan F, Roy S, et al. The HuR CMLD-2 inhibitor exhibits antitumor effects via MAD2 downregulation in thyroid cancer cells[J]. Sci Rep, 2019, 9(1):7374.DOI: 10.1038/s41598-019-43894-0.
|
[30] |
Jaiswal AK, Thaxton ML, Scherer GM,et al.Small molecule inhibition of RNA binding proteins in haematologic cancer[J]. RNA Biol, 2024, 21(1):1-14.DOI: 10.1080/15476286.2024.2303558.
|
[31] |
Kashkush A, Furth-Lavi J, Hodon J,et al.PROTAC and molecular glue degraders of the oncogenic RNA binding protein lin28[J]. Macromol Biosci, 2025, 25(3):e2400427.DOI: 10.1002/mabi.202400427.
|
[32] |
O'Rourke RL, Garner AL.Chemical probes for studying the eukaryotic translation initiation factor 4E (eIF4E)-regulated translatome in cancer[J]. ACS Pharmacol Transl Sci, 2025, 8(3):621-635.DOI: 10.1021/acsptsci.4c00674.
|
[33] |
Ma DB, Liu XY, Jia H,et al.A novel small-molecule inhibitor of SREBP-1 based on natural product monomers upregulates the sensitivity of lung squamous cell carcinoma cells to antitumor drugs[J]. Front Pharmacol, 2022(13):895744.DOI: 10.3389/fphar.2022.895744.
|
[34] |
Lan L, Liu J, Xing M, et al. Identification and validation of an aspergillus nidulans secondary metabolite derivative as an inhibitor of the musashi-RNA interaction[J]. Cancers (Basel), 2020, 12(8):2221.DOI: 10.3390/cancers12082221.
|
[35] |
Rhodes C, Balaratnam S, Yazdani K,et al.Targeting RNA-protein interactions with small molecules:promise and therapeutic potential[J]. Medicinal Chemistry Research, 2024, 33(11):2050-2065.DOI: 10.1007/s00044-024-03342-9.
|
[36] |
Gredell JA, Dittmer MJ, Wu M,et al.Recognition of siRNA asymmetry by TAR RNA binding protein[J]. Biochemistry, 2010, 49(14):3148-3155.DOI: 10.1021/bi902189s.
|
[37] |
Feng Y, Zhu S, Liu T,et al.Surmounting cancer drug resistance:new perspective on RNA-binding proteins[J]. Pharmaceuticals (Basel), 2023, 16(8):1114.DOI: 10.3390/ph16081114.
|
[38] |
Hill SF, Meisler MH.Antisense oligonucleotide therapy for neurodevelopmental disorders[J]. Dev Neurosci, 2021, 43(3/4):247-252.DOI: 10.1159/000517686.
|
[39] |
Borgonetti V, Galeotti N.Intranasal delivery of an antisense oligonucleotide to the RNA-binding protein HuR relieves nerve injury-induced neuropathic pain[J]. Pain, 2021, 162(5):1500-1510.DOI: 10.1097/j.pain.0000000000002154.
|
[40] |
Ni S, Zhuo Z, Pan Y,et al.Recent progress in aptamer discoveries and modifications for therapeutic applications[J]. ACS Appl Mater Interfaces, 2021, 13(8):9500-9519.DOI: 10.1021/acsami.0c05750.
|
[41] |
Shigdar S, Schrand B, Giangrande PH,et al.Aptamers:cutting edge of cancer therapies[J]. Mol Ther, 2021, 29(8):2396-2411.DOI: 10.1016/j.ymthe.2021.06.010.
|
[42] |
Gavas S, Quazi S, Karpiński TM.Nanoparticles for cancer therapy:current progress and challenges[J]. Nanoscale Res Lett, 2021, 16(1):173.DOI: 10.1186/s11671-021-03628-6.
|