切换至 "中华医学电子期刊资源库"

中华诊断学电子杂志 ›› 2025, Vol. 13 ›› Issue (03) : 165 -170. doi: 10.3877/cma.j.issn.2095-655X.2025.03.004

生物医学技术

RNA结合蛋白在肿瘤DNA损伤反应中的作用及机制
王宁1, 郁越1, 于冠宇1, 杨彦勇2, 张卫1,()   
  1. 1200433 上海,长海医院肛肠外科
    2200433 上海,海军军医大学海军医学系舰船辐射医学防护教研室
  • 收稿日期:2025-05-08 出版日期:2025-08-26
  • 通信作者: 张卫

The roles and mechanisms of RNA-binding proteins in the DNA damage response in tumors

Ning Wang1, Yue Yu1, Guanyu Yu1, Yanyong Yang2, Wei Zhang1,()   

  1. 1Department of Colorectal Surgery, Changhai Hospital, Naval Medical University, Shanghai 200433, China
    2Department of Marine Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China
  • Received:2025-05-08 Published:2025-08-26
  • Corresponding author: Wei Zhang
引用本文:

王宁, 郁越, 于冠宇, 杨彦勇, 张卫. RNA结合蛋白在肿瘤DNA损伤反应中的作用及机制[J/OL]. 中华诊断学电子杂志, 2025, 13(03): 165-170.

Ning Wang, Yue Yu, Guanyu Yu, Yanyong Yang, Wei Zhang. The roles and mechanisms of RNA-binding proteins in the DNA damage response in tumors[J/OL]. Chinese Journal of Diagnostics(Electronic Edition), 2025, 13(03): 165-170.

真核细胞依赖DNA损伤反应(DDR)监测并修复DNA损伤,以维持基因组稳定性。当DDR相关基因突变或功能失调时,会破坏这种平衡,促进肿瘤发生、发展和对治疗产生耐药性。近年来,大规模的遗传和分子分析发现RNA结合蛋白(RBPs)是维持基因组稳定性的主要参与者,RBPs调控诸多种重要功能蛋白的表达并直接参与到DNA损伤修复过程中。因此,本综述概括了RBPs如何通过转录后调控、非编码RNA互作等途径动态调控DDR通路,明确关键RBPs在DNA修复、细胞周期检查点及凋亡中的功能,并总结RBPs如何通过增强修复效率或抑制凋亡促进放化疗抵抗,为克服肿瘤治疗抵抗提供新靶点,推动基于RBPs功能异质性的精准治疗策略和促进新型RNA疗法的临床转化。

Eukaryotic cells rely on the DNA damage response (DDR) to monitor and repair DNA damage, thereby maintaining genomic stability. When DDR-related genes are mutated or dysfunctional, this balance is disrupted, promoting tumourigenesis, progression and resistance to therapy. Recent work, including large-scale genetic and molecular analyses, have identified RNA-binding proteins (RBPs) as major players in maintaining genome stability. RBPs regulate the expression of many critical proteins at the post-transcriptional level and are directly involved in DNA repair. Therefore, this review outlines how RBPs dynamically regulate the DDR pathway through post-transcriptional regulation, non-coding RNA interactions, clarifies the functions of key RBPs in DNA repair, cell cycle checkpoints and apoptosis, and summarizes how RBPs can contribute to radiotherapy resistance and chemoresistance by enhancing repair efficiency or inhibiting apoptosis. This provides new targets for overcoming cancer therapeutic resistance, promotes precision treatment strategies based on RBPs functional heterogeneity, and facilitates the clinical translation of novel RNA-based therapeutics.

图1 RNA结合蛋白直接参与DNA损伤修复机制注:a图示SFPQ-NONO与其他修复蛋白配位,促使DNA-PKcs自磷酸化并与Ku蛋白结合,促进DNA末端连接;b图示SFPQ直接结合Rad51/Rad51D,促进重组D环形成;c图示DNA损伤后,hnRNPUL1/2与MRN复合物结合并刺激DNA末端切除,增强ATR信号转导和HR修复;同时,PRPF19结合复制蛋白A1定位损伤位点,调节ATR激酶的激活;d图示hnRNPD识别和嵌入DNA的APE1内切酶活性,通过核苷酸切口修复途径去除错配的脱氧尿苷损伤。SFPQ为富脯氨酸和谷氨酰胺的剪接因子;NONO为含八聚体结合的非POU结构域蛋白;DNA-Pkcs为DNA依赖蛋白激酶催化亚基;hnRNPUL1/2为异质核糖核蛋白U样蛋白1和2;ATR为蛋白质丝氨酸/苏氨酸激酶和Rad3相关激酶;HR为同源重组;hnRNPD为异质性胞核核糖核蛋白D;APE1为脱嘌呤/脱密啶核酸内切酶1。本图由作者采用BioRender软件制作
图2 DNA损伤应答对RNA结合蛋白的调控注:a图示AKT磷酸化KSHRP,增强其活性,促进初级miRNA加工和miRNA生物发生;b图示DNA损伤激活AKT,诱导La RNP7磷酸化并被BRCA1/BARD1泛素化,经26S蛋白酶体降解;La RNP7耗竭抑制CDK1复合物,减少BRCA2磷酸化,促进Rad51募集以增强HR;c图示ZYG11B-E3泛素连接酶复合物调控ZFP36无名指蛋白样2的多泛素化与降解;遗传毒性应激下,降低其多泛素化并导致S期停滞;d图示在正常情况下,hnRNP A2B1促进转录复合物组装;DNA损伤时,其去乙酰化并从损伤部位脱离,抑制局部转录以维持基因组稳定性。AKT为蛋白质丝氨酸/苏氨酸激酶;KSHRP为KH型剪接调节蛋白;miRNA为微RNA;CDK1为细胞周期蛋白依赖性激酶1;HR为同源重组;RNAPⅡ为RNA聚合酶Ⅱ;本图由作者采用BioRender软件制作
图3 DNA损伤诱导HuR核质易位注:HuR在DNA损伤时转位至细胞质,结合并稳定其mRNA靶标,包括TFAM、CDKN1A。mRNA红色箭头表示mRNA的稳定性增加;HuR为人类抗原R;TFAM为线粒体转录因子A;ATR为蛋白质丝氨酸/苏氨酸激酶和Rad3相关激酶;CDKN1A为细胞周期蛋白依赖性激酶抑制剂1A。本图由作者采用BioRender软件制作
表1 靶向RBPs的肿瘤治疗机制
[1]
Qin HNi HLiu Y,et al.RNA-binding proteins in tumor progression[J].J Hematol Oncol202013(1):90.DOI:10.1186/s13045-020-00927-w.
[2]
Sternburg ELKarginov FV.Global approaches in studying RNA-binding protein interaction networks[J].Trends Biochem Sci202045(7):593-603.DOI:10.1016/j.tibs.2020.03.005.
[3]
Bampton A, Gittings LM, Fratta P, et al. The role of hnRNPs in frontotemporal dementia and amyotrophic lateral sclerosis[J].Acta Neuropathol2020140(5):599-623.DOI:10.1007/s00401-020-02203-0.
[4]
Vohhodina JGoehring LJLiu B,et al.BRCA1 binds TERRA RNA and suppresses R-Loop-based telomeric DNA damage[J].Nat Commun202112(1):3542.DOI:10.1038/s41467-021-23716-6.
[5]
Chen JKLin WLChen Z,et al.PARP-1-dependent recruitment of cold-inducible RNA-binding protein promotes double-strand break repair and genome stability[J].Proc Natl Acad Sci U S A2018115(8):E1759-E1768.DOI:10.1073/pnas.1713912115.
[6]
Gadelha RBMachado CBPessoa F,et al.The Role of WRAP53 in cell homeostasis and carcinogenesis onset[J].Curr Issues Mol Biol202244(11):5498-5515.DOI:10.3390/cimb44110372.
[7]
Mehta MRaguraman RRamesh R,et al.RNA binding proteins (RBPs) and their role in DNA damage and radiation response in cancer[J].Adv Drug Deliv Rev2022(191):114569.DOI:10.1016/j.addr.2022.114569.
[8]
Fu W, Ren H, Shou J, et al. Loss of NPPA-AS1 promotes heart regeneration by stabilizing SFPQ-NONO heteromer-induced DNA repair[J].Basic Res Cardiol2022117(1):10.DOI:10.1007/s00395-022-00921-y.
[9]
Jang YElsayed ZEki R,et al.Intrinsically disordered protein RBM14 plays a role in generation of RNA:DNA hybrids at double-strand break sites[J].Proc Natl Acad Sci U S A2020117(10):5329-5338.DOI:10.1073/pnas.1913280117.
[10]
Yu J, Ge S.PRPF19 functions in DNA damage repair and gemcitabine sensitivity via regulating DDB1 in bladder cancer cells[J].Cytotechnology202476(1):85-96.DOI:10.1007/s10616-023-00599-7.
[11]
Wang Z, Qu M, Chang S, et al. Human RNA-binding protein HNRNPD interacts with and regulates the repair of deoxyribouridine in DNA[J].Int J Biol Macromol2024262(Pt 1):129951.DOI:10.1016/j.ijbiomac.2024.129951.
[12]
Cui YWen YLv C,et al.Decreased RNA-binding protein IGF2BP2 downregulates NT5DC2,which suppresses cell proliferation,and induces cell cycle arrest and apoptosis in diffuse large B-cell lymphoma cells by regulating the p53 signaling pathway[J].Mol Med Rep202226(3):286.DOI:10.3892/mmr.2022.12802.
[13]
Lachiondo-Ortega SDelgado TCBaños-Jaime B,et al.Hu antigen R (HuR) protein structure,function and regulation in hepatobiliary tumors[J].Cancers (Basel)202214(11):2666.DOI:10.3390/cancers14112666.
[14]
Jiang FHedaya OMKhor E,et al.RNA binding protein PRRC2B mediates translation of specific mRNAs and regulates cell cycle progression[J].Nucleic Acids Res202351(11):5831-5846.DOI:10.1093/nar/gkad322.
[15]
Yang ZWang TWu D,et al.RNA N6-methyladenosine reader IGF2BP3 regulates cell cycle and angiogenesis in colon cancer[J].J Exp Clin Cancer Res202039(1):203.DOI:10.1186/s13046-020-01714-8.
[16]
Wu C, Chen W, Yu F, et al. Long Noncoding RNA HITTERS protects oral squamous cell carcinoma cells from endoplasmic reticulum stress-induced apoptosis via promoting MRE11-RAD50-NBS1 complex formation[J].Adv Sci (Weinh)20207(22):2002747.DOI:10.1002/advs.202002747.
[17]
Wang DZhou ZWu E,et al.LRIK interacts with the Ku70-Ku80 heterodimer enhancing the efficiency of NHEJ repair[J].Cell Death Differ202027(12):3337-3353.DOI:10.1038/s41418-020-0581-5.
[18]
Thapar RWang JLHammel M,et al.Mechanism of efficient double-strand break repair by a long non-coding RNA[J].Nucleic Acids Res202048(19):10953-10972.DOI:10.1093/nar/gkaa784.
[19]
Mohapatra SWinkle MTon AN,et al.The role of non-coding RNAs in chromosomal instability in cancer[J].J Pharmacol Exp Ther2023384(1):10-19.DOI:10.1124/jpet.122.001357.
[20]
Zhao KWang XXue X,et al.A long noncoding RNA sensitizes genotoxic treatment by attenuating ATM activation and homologous recombination repair in cancers[J].PLoS Biol202018(3):e3000666.DOI:10.1371/journal.pbio.3000666.
[21]
Chen FXu WTang M,et al.hnRNPA2B1 deacetylation by SIRT6 restrains local transcription and safeguards genome stability[J].Cell Death Differ202532(3):382-396.DOI:10.1038/s41418-024-01412-4.
[22]
Sidali ATeotia VSolaiman NS,et al.AU-Rich element rna binding proteins:at the crossroads of post-transcriptional regulation and genome integrity[J].Int J Mol Sci202123(1):96.DOI:10.3390/ijms23010096.
[23]
Qu HShi XXu Y,et al.Mechanism of Musashi2 affecting radiosensitivity of lung cancer by modulating DNA damage repair[J].MedComm (2020)20245(5):e548.DOI:10.1002/mco2.548.
[24]
Zhu H, Chen K, Chen Y, et al. RNA-binding protein ZCCHC4 promotes human cancer chemoresistance by disrupting DNA-damage-induced apoptosis[J].Signal Transduct Target Ther20227(1):240.DOI:10.1038/s41392-022-01033-8.
[25]
Cui JJGuo CXLi J,et al.CSDE1 enhances genotoxic drug resistance in cancer by modulating RPA2 through CSDE1-eIF3a regulatory complex[J].Drug Resist Updat2025(81):101249.DOI:10.1016/j.drup.2025.101249.
[26]
Gujar VLi HPaull TT,et al.Unraveling the nexus:genomic instability and metabolism in cancer[J].Cell Rep202544(4):115540.DOI:10.1016/j.celrep.2025.115540.
[27]
Majumder MChakraborty PMohan S,et al.HuR as a molecular target for cancer therapeutics and immune-related disorders[J].Adv Drug Deliv Rev2022(188):114442.DOI:10.1016/j.addr.2022.114442.
[28]
Filcenkova LReisbitzer AJoseph BP,et al.Application of a novel RNA-protein interaction assay to develop inhibitors blocking RNA-binding of the HuR protein[J].Front Genet2025(16):1549304.DOI:10.3389/fgene.2025.1549304.
[29]
Allegri L, Baldan F, Roy S, et al. The HuR CMLD-2 inhibitor exhibits antitumor effects via MAD2 downregulation in thyroid cancer cells[J].Sci Rep20199(1):7374.DOI:10.1038/s41598-019-43894-0.
[30]
Jaiswal AKThaxton MLScherer GM,et al.Small molecule inhibition of RNA binding proteins in haematologic cancer[J].RNA Biol202421(1):1-14.DOI:10.1080/15476286.2024.2303558.
[31]
Kashkush AFurth-Lavi JHodon J,et al.PROTAC and molecular glue degraders of the oncogenic RNA binding protein lin28[J].Macromol Biosci202525(3):e2400427.DOI:10.1002/mabi.202400427.
[32]
O'Rourke RLGarner AL.Chemical probes for studying the eukaryotic translation initiation factor 4E (eIF4E)-regulated translatome in cancer[J].ACS Pharmacol Transl Sci20258(3):621-635.DOI:10.1021/acsptsci.4c00674.
[33]
Ma DBLiu XYJia H,et al.A novel small-molecule inhibitor of SREBP-1 based on natural product monomers upregulates the sensitivity of lung squamous cell carcinoma cells to antitumor drugs[J].Front Pharmacol2022(13):895744.DOI:10.3389/fphar.2022.895744.
[34]
Lan L, Liu J, Xing M, et al. Identification and validation of an aspergillus nidulans secondary metabolite derivative as an inhibitor of the musashi-RNA interaction[J].Cancers (Basel)202012(8):2221.DOI:10.3390/cancers12082221.
[35]
Rhodes CBalaratnam SYazdani K,et al.Targeting RNA-protein interactions with small molecules:promise and therapeutic potential[J].Medicinal Chemistry Research202433(11):2050-2065.DOI:10.1007/s00044-024-03342-9.
[36]
Gredell JADittmer MJWu M,et al.Recognition of siRNA asymmetry by TAR RNA binding protein[J].Biochemistry201049(14):3148-3155.DOI:10.1021/bi902189s.
[37]
Feng YZhu SLiu T,et al.Surmounting cancer drug resistance:new perspective on RNA-binding proteins[J].Pharmaceuticals (Basel)202316(8):1114.DOI:10.3390/ph16081114.
[38]
Hill SFMeisler MH.Antisense oligonucleotide therapy for neurodevelopmental disorders[J].Dev Neurosci202143(3/4):247-252.DOI:10.1159/000517686.
[39]
Borgonetti VGaleotti N.Intranasal delivery of an antisense oligonucleotide to the RNA-binding protein HuR relieves nerve injury-induced neuropathic pain[J].Pain2021162(5):1500-1510.DOI:10.1097/j.pain.0000000000002154.
[40]
Ni SZhuo ZPan Y,et al.Recent progress in aptamer discoveries and modifications for therapeutic applications[J].ACS Appl Mater Interfaces202113(8):9500-9519.DOI:10.1021/acsami.0c05750.
[41]
Shigdar SSchrand BGiangrande PH,et al.Aptamers:cutting edge of cancer therapies[J].Mol Ther202129(8):2396-2411.DOI:10.1016/j.ymthe.2021.06.010.
[42]
Gavas SQuazi SKarpiński TM.Nanoparticles for cancer therapy:current progress and challenges[J].Nanoscale Res Lett202116(1):173.DOI:10.1186/s11671-021-03628-6.
[1] 王达, 朱建敏. 血小板/淋巴细胞计数比值对乳腺癌新辅助化疗疗效的预测效能[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(06): 650-653.
[2] 马超, 王传嘉, 张武坊. 经腋窝入路单孔腔镜保乳术与传统开放手术治疗早期乳腺癌的对比研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(06): 674-677.
[3] 张超, 常剑. 混合入路与中间入路行腹腔镜右半结肠癌根治术的近中期随访比较[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(06): 685-688.
[4] 陈系东, 王绍闯, 赵何伟, 王硕, 袁维栋. 高龄BCLC B期肝癌患者常规TACE术后急性肝功能恶化的危险因素研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(06): 689-692.
[5] 王婷文, 黄家晴, 卞晓洁, 陆晓峰, 管文贤. 基于CiteSpace和VOSviewer对胃肠道恶性肿瘤患者肠内免疫营养支持的文献计量分析[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(06): 693-697.
[6] 蒲茜, 文曰, 卢春燕, 赵锐. 经肛门内镜微创手术治疗直肠肿瘤应用研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(06): 698-700.
[7] 贺雅莉, 黄丽, 杨培娟. 功能保留手术在低位直肠癌治疗中的研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(06): 701-704.
[8] 高加勒, 张忠涛. 结直肠癌外科领域最新进展与热点[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(06): 595-599.
[9] 杜晓辉, 谢天宇, 晏阳. 我国腹腔镜结直肠癌外科治疗现状、问题与未来[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(06): 600-604.
[10] 陈朝乾, 赵宗贤, 徐顺, 姚远, 孙杰. 腹腔镜Dixon术中保留左结肠动脉对老年低位直肠癌患者的影响[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(06): 611-614.
[11] 严征远, 张恒, 曹能琦, 方兴超, 陈大敏. 单孔+1腹腔镜结直肠癌根治切除术的有效性及安全性临床观察[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(06): 615-618.
[12] 周金哲, 王贤清, 李自强, 石启蒙, 张久强, 朱俩辰, 黄琦, 葛步军. 低位保肛新术式-结肠肛管套叠式吻合——附2例病例介绍[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(06): 619-623.
[13] 钱龙, 蔡大明, 王行舟, 艾世超, 胡琼源, 孙锋, 宋鹏, 王峰, 王萌, 陆晓峰, 朱欢欢, 沈晓菲, 管文贤. 局部不可切除胃癌转化治疗(联合免疫治疗)后淋巴结转移的相关危险因素分析[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(06): 624-627.
[14] 薛兆强, 袁寅. 双镜联合保功能胃癌根治术治疗早期近端胃癌的临床研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(06): 628-632.
[15] 贺子蕗, 张靖, 刘卓, 李昊楠, 赵鑫鑫, 孙泽辉. 改良内翻手工缝合的Overlap吻合法在腹腔镜全胃切除术中的临床研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(06): 633-636.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?