切换至 "中华医学电子期刊资源库"

中华诊断学电子杂志 ›› 2022, Vol. 10 ›› Issue (03) : 207 -210. doi: 10.3877/cma.j.issn.2095-655X.2022.03.012

综述

DprE1抑制剂抗结核新药研究进展
李璐1, 唐神结1,()   
  1. 1. 101149 首都医科大学附属北京胸科医院(北京市结核病胸部肿瘤研究所)临床医学中心
  • 收稿日期:2022-01-05 出版日期:2022-08-26
  • 通信作者: 唐神结
  • 基金资助:
    北京市临床重点专科项目(20201214)

Research progress of DprE1 inhibitors as new anti-tuberculosis drugs

Lu Li1, Shenjie Tang1,()   

  1. 1. Clinical Medicine Center, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
  • Received:2022-01-05 Published:2022-08-26
  • Corresponding author: Shenjie Tang
引用本文:

李璐, 唐神结. DprE1抑制剂抗结核新药研究进展[J]. 中华诊断学电子杂志, 2022, 10(03): 207-210.

Lu Li, Shenjie Tang. Research progress of DprE1 inhibitors as new anti-tuberculosis drugs[J]. Chinese Journal of Diagnostics(Electronic Edition), 2022, 10(03): 207-210.

结核病尤其是耐药结核病仍然是威胁人类健康的主要传染病之一。目前临床上使用的不少抗结核药物存在治疗效果差、成本高和副作用大等缺点。因此迫切需要开发新的、更安全的、更有效和毒性更低,且具有崭新作用机制的抗结核药物。近年来,DprE1抑制剂类药物在抗结核作用中的研究取得了一定的进展。DprE1抑制剂类药物的作用靶点位于结核分枝杆菌的细胞壁,通过抑制结核分枝杆菌细胞壁DprE1,从而抑制结核分枝杆菌的生长。笔者就DprE1抑制剂的类别、作用机制、抗菌活性、药代动力学和药效动力学、动物实验、临床试验、安全性、有效性等方面的研究进展做一综述。

Tuberculosis continues to be one of the most serious infectious diseases threatening human health. At the moment, clinical use of anti-tuberculosis drugs has a poor therapeutic effect, has a high cost, has side effects, and has other flaws. As a result, there is an urgent need to develop new antitubercular drugs with new mechanism of action that are safer, more widely effective, and less toxic. Some progress has been made in the study of DprE1 inhibitors′ anti-tuberculosis effect in recent years. DprE1 inhibitors target the cell wall of mycobacterium tuberculosis and inhibit its growth by inhibiting the DprE1 enzyme that produces the mycobacterium tuberculosis cell wall.This paper reviewed DprE1 inhibitors interms of classification, mechanism of action, antimicrobial activity, pharmacokinetics and pharmacodynamics, as well as drug safety, animal experiments, and clinical trials.

[1]
World Health Organization.Global tuberculosis report 2021[R].Geneva:World Health Organization,2021:17.
[2]
Zhang G, Howe M, Aldrich CC, et al. Spirocyclic and bicyclic 8-Nitrobenzothiazinones for tuberculosis with improved physicochemical and pharmacokinetic properties[J].ACS Med Chem Lett201910(3):348-351.DOI:10.1021/acsmedchemlett.8b00634.
[3]
Kumar NSrivastava RPrakash A,et al.Virtual screening and free energy estimation for identifying mycobacterium tuberculosis flavoenzyme DprE1 inhibitors[J].J Mol Graph Model2021(102):107770.DOI:10.1016/j.jmgm.2020.107770.
[4]
Kb SKumari AShetty D,et al.Structure based pharmacophore modelling approach for the design of azaindole derivatives as DprE1 inhibitors for tuberculosis[J].J Mol Graph Model2020(101):107718.DOI:10.1016/j.jmgm.2020.107718.
[5]
Gao Y, Xie J, Tang R, et al. Identification of a pyrimidinetrione derivative as the potent DprE1 inhibitor by structure-based virtual ligand screening[J].Bioorg Chem2019(85):168-178.DOI:10.1016/j.bioorg.2018.12.018.
[6]
Whitehurst BCYoung RJBurley GA,et al.Identificationof 2-((2,3-dihydrobenzo[b][1,4]dioxin-6-yl)amino)-N-phenylpropanamides as a novel class of potent DprE1 inhibitors[J].Bioorg Med Chem Lett202030(12):127192.DOI:10.1016/j.bmcl.2020.127192.
[7]
Zhang GGuo SCui H,et al.Virtual screening of small molecular inhibitors against DprE1[J].Molecules201823(3):524.DOI:10.3390/molecules23030524.
[8]
Piton JVocat ALupien A,et al.Structure-Based drug design and characterization of sulfonyl-piperazine benzothiazinone inhibitors of DprE1 from mycobacterium tuberculosis[J].Antimicrob Agents Chemother201862(10):e00681-18.DOI:10.1128/AAC.00681-18.
[9]
Balabon OPitta ERogacki MK,et al.Optimization of hydantoins as potent antimycobacterial decaprenylphosphoryl-β-d-ribose oxidase (DprE1) inhibitors[J].J Med Chem202063(10):5367-5386.DOI:10.1021/acs.jmedchem.0c00107.
[10]
Liu LKong CFumagalli M,et al.Design, synthesis and evaluation of covalent inhibitors of DprE1 as antitubercular agents[J].Eur J Med Chem2020(208):112773.DOI:10.1016/j.ejmech.2020.11277.
[11]
Liu RLyu XBatt SM,et al.Determinants of the inhibition of DprE1 and CYP2C9 by antitubercular thiophenes[J].Angew Chem Int Ed Engl201756(42):13011-13015.DOI:10.1002/anie.201707324.
[12]
Borthwick JAAlemparte CWall I,et al.Mycobacterium tuberculosis decaprenylphosphoryl-β-d-ribose oxidase inhibitors: expeditious reconstruction of suboptimal hits into a series with potent in vivo activity[J].J Med Chem202063(5):2557-2576.DOI:10.1021/acs.jmedchem.9b01561.
[13]
Imran MA S AThabet HK, et al.Synthetic molecules as DprE1 inhibitors: a patent review[J].Expert Opin Ther Pat202131(8):759-772.DOI:10.1080/13543776.2021.1902990.
[14]
Mariandyshev AO, Khokhlov AL, Smerdin SV, et al. The main results of clinical trials of the efficacy, safety and pharmacokinetics of the perspective anti-tuberculosis drug makozinone(PBTZ169)[J].TeArkh202092(3):61-72.DOI:10.26442/00403660.2020.03.000621.
[15]
Dube PSLegoabe LJJordaan A,et al.Easily accessed nitroquinolones exhibiting potent and selective anti-tubercular activity[J].Eur J Med Chem2021(213):113207.DOI:10.1016/j.ejmech.2021.113207.
[16]
Foo CSLechartier BKolly GS,et al.Characterization of DprE1-mediated benzothiazinone resistance in mycobacterium tuberculosis[J].antimicrob agents chemother201660(11):6451-6459.DOI:10.1128/AAC.01523-16.
[17]
Guo SFu LWang B,et al.In vitro and in vivo antimicrobial activities of a novel piperazine-containing benzothiazinones candidate TZY-5-84 against mycobacterium tuberculosis[J].Biomed Pharmacother2020(131):110777.DOI:10.1016/j.biopha.2020.110777.
[18]
Makarov VLechartier BZhang M,et al.Towards a new combination therapy for tuberculosis with next generation benzothiazinones[J].EMBO Mol Med20146(3):372-383.DOI:10.1002/emmm.201303575.
[19]
Robertson GTRamey MEMassoudi LM,et al.Comparative analysis of pharmacodynamics in the C3HeB/FeJ mouse tuberculosis model for DprE1 inhibitors TBA-7371, PBTZ169, and OPC-167832[J].Antimicrob Agents Chemother202165(11):e0058321.DOI:10.1128/AAC.00583-21.
[20]
Lupien AVocat AFoo CS,et al.Optimized background regimen for treatment of active tuberculosis with the next-generation benzothiazinone macozinone (PBTZ169)[J].Antimicrob Agents Chemother201862(11):e00840-18.DOI:10.1128/AAC.00840-18.
[21]
Spaggiari D, Desfontaine V, Cruchon S, et al.Development and validation of a multiplex UHPLC-MS/MS method for the determination of the investigational antibiotic against multi-resistant tuberculosis macozinone(PBTZ169) and five active metabolites in human plasma[J].PLoS One201914(5):e0217139.DOI:10.1371/journal.pone.0217139.
[22]
Zhang GSheng LHegde P,et al.8-cyanobenzothiazinone analogs with potent antitubercular activity[J].Med Chem Res202130(2):449-458.DOI:10.1007/s00044-020-02676-4.
[23]
Li PWang BZhang X,et al.Identification of novel benzothiopyranone compounds against mycobacterium tuberculosis through scaffold morphing from benzothiazinones[J].Eur J Med Chem2018(160):157-170.DOI:10.1016/j.ejmech.2018.09.042.
[24]
Grover SAlderwick LJMishra AK,et al.Benzothiazinones mediate killing of corynebacterineae by blocking decaprenyl phosphate recycling involved in cell wall biosynthesis[J].J Biol Chem, 2014289(9):6177-6187.DOI:10.1074/jbc.M113.522623.
[25]
Hariguchi N, Chen X, Hayashi Y, et al. OPC-167832, a novel carbostyril derivative with potent antituberculosis activity as a DprE1 inhibitor[J].Antimicrob Agents Chemother202064(6):e02020-19.DOI:10.1128/AAC.02020-19.
[26]
Wang FSambandan DHalder R,et al.Identification of a small molecule with activity against drug-resistant and persistent tuberculosis[J].Proc Natl Acad Sci U S A2013110(27):2510-2517.DOI:10.1073/pnas.1309171110.
[1] 周红玉, 李羽. 右美托咪定在儿童患者麻醉中的应用[J]. 中华妇幼临床医学杂志(电子版), 2021, 17(04): 482-487.
[2] 金小琳, 杨智彬, 詹淑华, 朱丹, 何海英, 殷水泽, 马世武. 1 501例初治住院结核病患者肝功能异常的影响因素[J]. 中华实验和临床感染病杂志(电子版), 2020, 14(05): 394-400.
[3] 双环醇临床应用专家委员会. 双环醇临床应用专家共识——2020版[J]. 中华实验和临床感染病杂志(电子版), 2020, 14(03): 177-185.
[4] 沈甜, 朱易华, 顾德林, 陈俊林, 曹兴建. 白细胞群落参数在监测抗结核药物致粒细胞下降中的临床价值[J]. 中华实验和临床感染病杂志(电子版), 2017, 11(01): 60-64.
[5] 习一清, 杨丽洁, 王丹雯, 杨张朔, 冯茂辉, 谢伟. eRF3a/GSPT1在常见肿瘤发生发展过程中的作用[J]. 中华普通外科学文献(电子版), 2019, 13(03): 249-252.
[6] 赵斌, 王翔, 王小龙, 汤嵩, 毛杰. α-倒捻子素抗肿瘤作用机制研究进展[J]. 中华普通外科学文献(电子版), 2019, 13(02): 157-160.
[7] 孙海清, 姜立新, 李宝元, 郑海涛. 分子靶向药物索拉非尼在甲状腺癌的应用进展[J]. 中华普通外科学文献(电子版), 2016, 10(03): 227-230.
[8] 陈凤, 唐怡敏, 黎倩卉, 刘映霞, 王菲. 抗结核药物肝损伤ALDH2基因多态性分析[J]. 中华肺部疾病杂志(电子版), 2022, 15(01): 103-105.
[9] 孟炜, 赵辉, 台艳, 张琪, 易述红, 许赤, 李华, 杨扬, 陈规划. 微小RNA在肝细胞癌中的研究进展[J]. 中华肝脏外科手术学电子杂志, 2015, 04(03): 191-192.
[10] 王磊, 白喜玲, 朱道奇. 西妥昔单抗治疗胃肠道恶性肿瘤的临床疗效观察[J]. 中华结直肠疾病电子杂志, 2014, 03(03): 185-188.
[11] 陶庆霞, 张鹏, 吴翠莹, 孙恺, 郑江华, 王翀. 大蒜素抗肿瘤作用及其机制的研究进展[J]. 中华神经创伤外科电子杂志, 2016, 02(06): 365-368.
[12] 刘红伟, 李晓非, 苏俊华, 钱绍丽, 张建瑞, 普玨. 昆明市75例非结核分枝杆菌鉴定及药敏结果分析[J]. 中华临床实验室管理电子杂志, 2020, 08(03): 170-174.
[13] 刘艳, 唐神结. 肠道菌群与抗结核药及其所致肝损伤的相关性研究进展[J]. 中华诊断学电子杂志, 2023, 11(02): 82-86.
[14] 王少珍, 廖联明. 黄药子中毒导致肝损伤的机制研究[J]. 中华卫生应急电子杂志, 2018, 04(01): 33-44.
阅读次数
全文


摘要