[1] |
World Health Organization.Global tuberculosis report 2021[R].Geneva:World Health Organization,2021:17.
|
[2] |
Zhang G, Howe M, Aldrich CC, et al. Spirocyclic and bicyclic 8-Nitrobenzothiazinones for tuberculosis with improved physicochemical and pharmacokinetic properties[J]. ACS Med Chem Lett, 2019, 10(3):348-351.DOI: 10.1021/acsmedchemlett.8b00634.
|
[3] |
Kumar N, Srivastava R, Prakash A,et al.Virtual screening and free energy estimation for identifying mycobacterium tuberculosis flavoenzyme DprE1 inhibitors[J]. J Mol Graph Model, 2021(102):107770.DOI: 10.1016/j.jmgm.2020.107770.
|
[4] |
Kb S, Kumari A, Shetty D,et al.Structure based pharmacophore modelling approach for the design of azaindole derivatives as DprE1 inhibitors for tuberculosis[J]. J Mol Graph Model, 2020(101):107718.DOI: 10.1016/j.jmgm.2020.107718.
|
[5] |
Gao Y, Xie J, Tang R, et al. Identification of a pyrimidinetrione derivative as the potent DprE1 inhibitor by structure-based virtual ligand screening[J]. Bioorg Chem, 2019(85):168-178.DOI: 10.1016/j.bioorg.2018.12.018.
|
[6] |
Whitehurst BC, Young RJ, Burley GA,et al.Identificationof 2-((2,3-dihydrobenzo[b][1,4]dioxin-6-yl)amino)-N-phenylpropanamides as a novel class of potent DprE1 inhibitors[J]. Bioorg Med Chem Lett, 2020, 30(12):127192.DOI: 10.1016/j.bmcl.2020.127192.
|
[7] |
Zhang G, Guo S, Cui H,et al.Virtual screening of small molecular inhibitors against DprE1[J]. Molecules, 2018, 23(3):524.DOI: 10.3390/molecules23030524.
|
[8] |
Piton J, Vocat A, Lupien A,et al.Structure-Based drug design and characterization of sulfonyl-piperazine benzothiazinone inhibitors of DprE1 from mycobacterium tuberculosis[J]. Antimicrob Agents Chemother, 2018, 62(10):e00681-18.DOI: 10.1128/AAC.00681-18.
|
[9] |
Balabon O, Pitta E, Rogacki MK,et al.Optimization of hydantoins as potent antimycobacterial decaprenylphosphoryl-β-d-ribose oxidase (DprE1) inhibitors[J]. J Med Chem, 2020, 63(10):5367-5386.DOI: 10.1021/acs.jmedchem.0c00107.
|
[10] |
Liu L, Kong C, Fumagalli M,et al.Design, synthesis and evaluation of covalent inhibitors of DprE1 as antitubercular agents[J]. Eur J Med Chem, 2020(208):112773.DOI: 10.1016/j.ejmech.2020.11277.
|
[11] |
Liu R, Lyu X, Batt SM,et al.Determinants of the inhibition of DprE1 and CYP2C9 by antitubercular thiophenes[J]. Angew Chem Int Ed Engl, 2017, 56(42):13011-13015.DOI: 10.1002/anie.201707324.
|
[12] |
Borthwick JA, Alemparte C, Wall I,et al.Mycobacterium tuberculosis decaprenylphosphoryl-β-d-ribose oxidase inhibitors: expeditious reconstruction of suboptimal hits into a series with potent in vivo activity[J]. J Med Chem, 2020, 63(5):2557-2576.DOI: 10.1021/acs.jmedchem.9b01561.
|
[13] |
Imran M, A S A, Thabet HK, et al.Synthetic molecules as DprE1 inhibitors: a patent review[J]. Expert Opin Ther Pat, 2021, 31(8):759-772.DOI: 10.1080/13543776.2021.1902990.
|
[14] |
Mariandyshev AO, Khokhlov AL, Smerdin SV, et al. The main results of clinical trials of the efficacy, safety and pharmacokinetics of the perspective anti-tuberculosis drug makozinone(PBTZ169)[J]. TeArkh, 2020, 92(3):61-72.DOI: 10.26442/00403660.2020.03.000621.
|
[15] |
Dube PS, Legoabe LJ, Jordaan A,et al.Easily accessed nitroquinolones exhibiting potent and selective anti-tubercular activity[J]. Eur J Med Chem, 2021(213):113207.DOI: 10.1016/j.ejmech.2021.113207.
|
[16] |
Foo CS, Lechartier B, Kolly GS,et al.Characterization of DprE1-mediated benzothiazinone resistance in mycobacterium tuberculosis[J]. antimicrob agents chemother, 2016, 60(11):6451-6459.DOI: 10.1128/AAC.01523-16.
|
[17] |
Guo S, Fu L, Wang B,et al.In vitro and in vivo antimicrobial activities of a novel piperazine-containing benzothiazinones candidate TZY-5-84 against mycobacterium tuberculosis[J]. Biomed Pharmacother, 2020(131):110777.DOI: 10.1016/j.biopha.2020.110777.
|
[18] |
Makarov V, Lechartier B, Zhang M,et al.Towards a new combination therapy for tuberculosis with next generation benzothiazinones[J]. EMBO Mol Med, 2014, 6(3):372-383.DOI: 10.1002/emmm.201303575.
|
[19] |
Robertson GT, Ramey ME, Massoudi LM,et al.Comparative analysis of pharmacodynamics in the C3HeB/FeJ mouse tuberculosis model for DprE1 inhibitors TBA-7371, PBTZ169, and OPC-167832[J]. Antimicrob Agents Chemother, 2021, 65(11):e0058321.DOI: 10.1128/AAC.00583-21.
|
[20] |
Lupien A, Vocat A, Foo CS,et al.Optimized background regimen for treatment of active tuberculosis with the next-generation benzothiazinone macozinone (PBTZ169)[J]. Antimicrob Agents Chemother, 2018, 62(11):e00840-18.DOI: 10.1128/AAC.00840-18.
|
[21] |
Spaggiari D, Desfontaine V, Cruchon S, et al.Development and validation of a multiplex UHPLC-MS/MS method for the determination of the investigational antibiotic against multi-resistant tuberculosis macozinone(PBTZ169) and five active metabolites in human plasma[J]. PLoS One, 2019, 14(5):e0217139.DOI: 10.1371/journal.pone.0217139.
|
[22] |
Zhang G, Sheng L, Hegde P,et al.8-cyanobenzothiazinone analogs with potent antitubercular activity[J]. Med Chem Res, 2021, 30(2):449-458.DOI: 10.1007/s00044-020-02676-4.
|
[23] |
Li P, Wang B, Zhang X,et al.Identification of novel benzothiopyranone compounds against mycobacterium tuberculosis through scaffold morphing from benzothiazinones[J]. Eur J Med Chem, 2018(160):157-170.DOI: 10.1016/j.ejmech.2018.09.042.
|
[24] |
Grover S, Alderwick LJ, Mishra AK,et al.Benzothiazinones mediate killing of corynebacterineae by blocking decaprenyl phosphate recycling involved in cell wall biosynthesis[J]. J Biol Chem, 2014, 289(9):6177-6187.DOI: 10.1074/jbc.M113.522623.
|
[25] |
Hariguchi N, Chen X, Hayashi Y, et al. OPC-167832, a novel carbostyril derivative with potent antituberculosis activity as a DprE1 inhibitor[J]. Antimicrob Agents Chemother, 2020, 64(6):e02020-19.DOI: 10.1128/AAC.02020-19.
|
[26] |
Wang F, Sambandan D, Halder R,et al.Identification of a small molecule with activity against drug-resistant and persistent tuberculosis[J]. Proc Natl Acad Sci U S A, 2013, 110(27):2510-2517.DOI: 10.1073/pnas.1309171110.
|