切换至 "中华医学电子期刊资源库"

中华诊断学电子杂志 ›› 2022, Vol. 10 ›› Issue (03) : 211 -215. doi: 10.3877/cma.j.issn.2095-655X.2022.03.013

综述

铁死亡在阿尔茨海默病发病机制中的研究进展
刘倩1, 李鑫1, 刘欣1, 苑金香2,()   
  1. 1. 272067 济宁医学院基础医学院
    2. 272067 济宁医学院协同创新中心
  • 收稿日期:2022-06-29 出版日期:2022-08-26
  • 通信作者: 苑金香

Research progress of ferroptosis in the pathogenesis of Alzheimer′s disease

Qian Liu1, Xin Li1, Xin Liu1, Jinxiang Yuan2,()   

  1. 1. College of Basic Medicine, Jining Medical University, Jining 272067, China
    2. Collaborative Innovation Center, Jining Medical University, Jining 272067, China
  • Received:2022-06-29 Published:2022-08-26
  • Corresponding author: Jinxiang Yuan
引用本文:

刘倩, 李鑫, 刘欣, 苑金香. 铁死亡在阿尔茨海默病发病机制中的研究进展[J]. 中华诊断学电子杂志, 2022, 10(03): 211-215.

Qian Liu, Xin Li, Xin Liu, Jinxiang Yuan. Research progress of ferroptosis in the pathogenesis of Alzheimer′s disease[J]. Chinese Journal of Diagnostics(Electronic Edition), 2022, 10(03): 211-215.

阿尔茨海默病(AD)是常见的神经退行性疾病,其发病与年龄增长密切相关。随着人口老龄化的加剧,AD的发病率逐年上升。铁死亡作为一种不同于细胞凋亡、坏死和自噬的新型细胞死亡形式,其的主要特征包括铁依赖性的脂质过氧化、谷胱甘肽耗竭和铁超载。谷胱甘肽过氧化物酶4(GPX4)是一种硒蛋白,具有抗脂质过氧化的作用,是铁死亡中的关键调节因子。脂质过氧化、铁代谢紊乱以及硒缺乏介导的铁死亡均展现出强烈的AD相关性。笔者主要总结铁死亡在AD中的关键机制及研究进展,并展望铁死亡在AD治疗方面的作用。

Alzheimer′s disease (AD) is a common neurodegenerative disease which is closely related to aging. AD is becoming more common with the aggravation of population aging, the incidence rate of it increases year by year. Ferroptosis is a type of cell death distinct from apoptosis, necrosis, and autophagy. Ferroptosis is distinguished by iron-dependent lipid peroxidation, glutathione depletion, and iron overload. Glutathione peroxidase 4 (GPX4) is a selenoprotein with anti-lipid peroxidation and is a key regulator in ferroptosis. Lipid peroxidation, iron metabolism disruption, and ferroptosis caused by selenium deficiency demonstrate close relationship with AD. This paper summarizes the key mechanisms and research progress of ferroptosis in AD, as well as the prospects of ferroptosis in the treatment of AD.

[1]
DeTure MADickson DW.The neuropathological diagnosis of Alzheimer′s disease[J].Mol Neurodegener201914(1):32.DOI:10.1186/s13024-019-0333-5.
[2]
魏文石.直面我国阿尔茨海默病诊治的挑战——《中国阿尔茨海默病报告2021》解读[J].诊断学理论与实践202221(1):5-7.DOI:10.16150/j.1671-2870.2022.01.002.
[3]
Yan NZhang J.Iron metabolism,ferroptosis,and the links with Alzheimer′s disease[J].Front Neurosci2019(13):1443.DOI:10.3389/fnins.2019.01443.
[4]
Dixon SJLemberg KMLamprecht MR,et al.Ferroptosis:an iron-dependent form of nonapoptotic cell death[J].Cell2012149(5):1060-1072.DOI:10.1016/j.cell.2012.03.042.
[5]
Yan HFZou TTuo QZ,et al.Ferroptosis:mechanisms and links with diseases[J].Signal Transduct Target Ther20216(1):49.DOI:10.1038/s41392-020-00428-9.
[6]
Ashraf AJeandriens JParkes HG,et al.Iron dyshomeostasis,lipid peroxidation and perturbed expression of cystine/glutamate antiporter in Alzheimer′s disease:evidence of ferroptosis[J].Redox Biol2020(32):101494.DOI:10.1016/j.redox.2020.101494.
[7]
Yang WSStockwell BR.Ferroptosis:death by lipid peroxidation[J].Trends Cell Biol201626(3):165-176.DOI:10.1016/j.tcb.2015.10.014.
[8]
Forcina GCDixon SJ.GPX4 at the crossroads of lipid homeostasis and ferroptosis[J].Proteomics201919(18):e1800311.DOI:10.1002/pmic.201800311.
[9]
Forman HJZhang HRinna A.Glutathione:overview of its protective roles,measurement,and biosynthesis[J].Mol Aspects Med200930(1-2):1-12.DOI:10.1016/j.mam.2008.08.006.
[10]
Yang WS, SriRamaratnam R, Welsch ME, et al. Regulation of ferroptotic cancer cell death by GPX4[J].Cell2014156(1-2):317-331.DOI:10.1016/j.cell.2013.12.010.
[11]
Perluigi MCoccia RButterfield DA.4-Hydroxy-2-nonenal,a reactive product of lipid peroxidation,and neurodegenerative diseases:a toxic combination illuminated by redox proteomics studies[J].Antioxid Redox Signal201217(11):1590-1609.DOI:10.1089/ars.2011.4406.
[12]
Bradley-Whitman MALovell MA.Biomarkers of lipid peroxidation in Alzheimer disease (AD):an update[J].Arch Toxicol201589(7):1035-1044.DOI:10.1007/s00204-015-1517-6.
[13]
Trares K, Gào X, Perna L, et al. Associations of urinary 8-iso-prostaglandin F(2α) levels with all-cause dementia,Alzheimer′s disease,and vascular dementia incidence:results from a prospective cohort study[J].Alzheimers Dement202016(5):804-813.DOI:10.1002/alz.12081.
[14]
Ates GGoldberg JCurrais A,et al.CMS121,a fatty acid synthase inhibitor,protects against excess lipid peroxidation and inflammation and alleviates cognitive loss in a transgenic mouse model of Alzheimer′s disease[J].Redox Biol2020(36):101648.DOI:10.1016/j.redox.2020.101648.
[15]
Hambright WSFonseca RSChen L,et al.Ablation of ferroptosis regulator glutathione peroxidase 4 in forebrain neurons promotes cognitive impairment and neurodegeneration[J].Redox Biol2017(12):8-17.DOI:10.1016/j.redox.2017.01.021.
[16]
Chen LDar NJNa R,et al.Enhanced defense against ferroptosis ameliorates cognitive impairment and reduces neurodegeneration in 5xFAD mice[J].Free Radic Biol Med2022(180):1-12.DOI:10.1016/j.freeradbiomed.2022.01.002.
[17]
Tao WYu LShu S,et al.miR-204-3p/Nox4 mediates memory deficits in a mouse model of Alzheimer′s disease[J].Mol Ther202129(1):396-408.DOI:10.1016/j.ymthe.2020.09.006.
[18]
Luengo ETrigo-Alonso PFernández-Mendívil C,et al.Implication of type 4 NADPH oxidase (NOX4) in tauopathy[J].Redox Biol2022(49):102210.DOI:10.1016/j.redox.2021.102210.
[19]
Park MW, Cha HW, Kim J, et al. NOX4 promotes ferroptosis of astrocytes by oxidative stress-induced lipid peroxidation via the impairment of mitochondrial metabolism in Alzheimer′s diseases[J].Redox Biol2021(41):101947.DOI:10.1016/j.redox.2021.101947.
[20]
McAllum EJHare DJVolitakis I,et al.Regional iron distribution and soluble ferroprotein profiles in the healthy human brain[J].Prog Neurobiol2020(186):101744.DOI:10.1016/j.pneurobio.2019.101744.
[21]
Belaidi AABush AI.Iron neurochemistry in Alzheimer′s disease and Parkinson′s disease:targets for therapeutics[J].J Neurochem2016(139 Suppl 1):179-197.DOI:10.1111/jnc.13425.
[22]
Ward RJZucca FADuyn JH,et al.The role of iron in brain ageing and neurodegenerative disorders[J].Lancet Neurol201413(10):1045-1060.DOI:10.1016/S1474-4422(14)70117-6.
[23]
黄健,安红伟,曹诗杰.铁死亡与阿尔茨海默病的研究进展[J].中国病理生理杂志202137(11):2088-93.
[24]
Ayton SPortbury SKalinowski P,et al.Regional brain iron associated with deterioration in Alzheimer′s disease:a large cohort study and theoretical significance[J].Alzheimers Dement202117(7):1244-1256.DOI:10.1002/alz.12282.
[25]
Ayton SDiouf IBush AI.Evidence that iron accelerates Alzheimer′s pathology:a CSF biomarker study[J].J Neurol Neurosurg Psychiatry201889(5):456-460.DOI:10.1136/jnnp-2017-316551.
[26]
van Duijn S, Bulk M, van Duinen SG, et al. Cortical iron reflects severity of Alzheimer′s disease[J].J Alzheimers Dis201760(4):1533-1545.DOI:10.3233/JAD-161143.
[27]
Serrano-Pozo A, Das S, Hyman BT. APOE and Alzheimer′s disease:advances in genetics,pathophysiology,and therapeutic approaches[J].Lancet Neurol202120(1):68-80.DOI:10.1016/S1474-4422(20)30412-9.
[28]
van Bergen JMLi XHua J,et al.Colocalization of cerebral iron with Amyloid beta in mild cognitive impairment[J].Sci Rep2016(6):35514.DOI:10.1038/srep35514.
[29]
Ayton S, Faux NG, Bush AI. Ferritin levels in the cerebrospinal fluid predict Alzheimer′s disease outcomes and are regulated by APOE[J].Nat Commun2015(6):6760.DOI:10.1038/ncomms7760.
[30]
Zhang DLWu JShah BN,et al.Erythrocytic ferroportin reduces intracellular iron accumulation,hemolysis,and malaria risk[J].Science2018359(6383):1520-1523.DOI:10.1126/science.aal2022.
[31]
Bao WDPang PZhou XT,et al.Loss of ferroportin induces memory impairment by promoting ferroptosis in Alzheimer′s disease[J].Cell Death Differ202128(5):1548-1562.DOI:10.1038/s41418-020-00685-9.
[32]
Mancias JDWang XGygi SP,et al.Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy[J].Nature2014509(7498):105-109.DOI:10.1038/nature13148.
[33]
Fujii J, Homma T, Kobayashi S. Ferroptosis caused by cysteine insufficiency and oxidative insult[J].Free Radic Res202054(11-12):969-980.DOI:10.1080/10715762.2019.1666983.
[34]
Latunde-Dada GO.Ferroptosis:role of lipid peroxidation,iron and ferritinophagy[J].Biochim Biophys Acta Gen Subj20171861(8):1893-1900.DOI:10.1016/j.bbagen.2017.05.019.
[35]
Hoxhaj GManning BD.The PI3K-AKT network at the interface of oncogenic signalling and cancer metabolism[J].Nat Rev Cancer202020(2):74-88.DOI:10.1038/s41568-019-0216-7.
[36]
Belaidi AAMasaldan SSouthon A,et al.Apolipoprotein E potently inhibits ferroptosis by blocking ferritinophagy[J/OL].Mol Psychiatry2022:E1[2022-06-29].published online ahead of print April 28,2022].DOI:10.1038/s41380-022-01568-w.

URL    
[37]
Tian YLu JHao X,et al.FTH1 inhibits ferroptosis through ferritinophagy in the 6-OHDA model of parkinson′s disease[J].Neurotherapeutics202017(4):1796-1812.DOI:10.1007/s13311-020-00929-z.
[38]
Zuo Y, Xie J, Li X, et al. Ferritinophagy-mediated ferroptosis involved in paraquat-induced neurotoxicity of dopaminergic neurons:implication for neurotoxicity in PD[J].Oxid Med Cell Longev2021(2021):9961628.DOI:10.1155/2021/9961628.
[39]
Xiao JZhang STu B,et al.Arsenite induces ferroptosis in the neuronal cells via activation of ferritinophagy[J].Food Chem Toxicol2021(151):112114.DOI:10.1016/j.fct.2021.112114.
[40]
Gao SJin YHall KS,et al.Selenium level and cognitive function in rural elderly Chinese[J].Am J Epidemiol2007165(8):955-965.DOI:10.1093/aje/kwk073.
[41]
Akbaraly TNHininger-Favier ICarrière I,et al.Plasma selenium over time and cognitive decline in the elderly[J].Epidemiology200718(1):52-58.DOI:10.1097/01.ede.0000248202.83695.4e.
[42]
Cardoso BR, Ong TP, Jacob-Filho W, et al. Nutritional status of selenium in Alzheimer′s disease patients[J].Br J Nutr2010103(6):803-806.DOI:10.1017/S0007114509992832.
[43]
Xia X, Zhang X, Liu M, et al. Toward improved human health:efficacy of dietary selenium on immunity at the cellular level[J].Food & function202112(3):976-989.DOI:10.1039/d0fo03067h.
[44]
Friedmann Angeli JP, Conrad M. Selenium and GPX4, a vital symbiosis[J].Free Radic Biol Med2018(127):153-159.DOI:10.1016/j.freeradbiomed.2018.03.001.
[45]
Ingold IBerndt CSchmitt S,et al.Selenium utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis[J].Cell2018172(3):409-422.e21.DOI:10.1016/j.cell.2017.11.048.
[46]
Tuo QZMasaldan SSouthon A,et al.Characterization of selenium compounds for anti-ferroptotic activity in neuronal cells and after cerebral ischemia-reperfusion injury[J].Neurotherapeutics202118(4):2682-2691.DOI:10.1007/s13311-021-01111-9.
[47]
Yao YChen ZZhang H,et al.Selenium-GPX4 axis protects follicular helper T cells from ferroptosis[J].Nat Immunol202122(9):1127-1139.DOI:10.1038/s41590-021-00996-0.
[48]
Leiter OZhuo ZRust R,et al.Selenium mediates exercise-induced adult neurogenesis and reverses learning deficits induced by hippocampal injury and aging[J].Cell Metab202234(3):408-423.e8.DOI:10.1016/j.cmet.2022.01.005.
[49]
Li ZFerguson LDeol KK,et al.Ribosome stalling during selenoprotein translation exposes a ferroptosis vulnerability[J].Nat Chem Biol202218(7):751-761.DOI:10.1038/s41589-022-01033-3.
[50]
Zhang Y, Zhou Y, Schweizer U, et al. Comparative analysis of selenocysteine machinery and selenoproteome gene expression in mouse brain identifies neurons as key functional sites of selenium in mammals[J].J Biol Chem2008283(4):2427-2438.DOI:10.1074/jbc.M707951200.
[51]
Solovyev NDrobyshev EBjørklund G,et al.Selenium,selenoprotein P,and Alzheimer′s disease:is there a link?[J].Free Radic Biol Med2018(127):124-133.DOI:10.1016/j.freeradbiomed.2018.02.030.
[52]
Shepherd CMcCann HHalliday GM.Variations in the neuropathology of familial Alzheimer′s disease[J].Acta Neuropathol2009118(1):37-52.DOI:10.1007/s00401-009-0521-4.
[53]
Greenough MALane DBalez R,et al.Selective ferroptosis vulner-ability due to familial Alzheimer′s disease presenilin mutations[J/OL].Cell Death Differ2022:E1[2022-06-29].published online ahead of print April 21,2022].DOI:10.1038/s41418-022-01003-1.

URL    
[54]
Wang YYan SLiu X,et al.PRMT4 promotes ferroptosis to aggravate doxorubicin-induced cardiomyopathy via inhibition of the Nrf2/GPX4 pathway[J/OL].Cell Death Differ2022:E1[2022-06-29].published online ahead of print April 5,2022].DOI:10.1038/s41418-022-00990-5.

URL    
[55]
Wang CYZhang QXun Z,et al.Increases of iASPP-Keap1 interaction mediated by syringin enhance synaptic plasticity and rescue cognitive impairments via stabilizing Nrf2 in Alzheimer′s models[J].Redox Biol2020(36):101672.DOI:10.1016/j.redox.2020.101672.
[56]
Robert ALiu YNguyen M,et al.Regulation of copper and iron homeostasis by metal chelators:a possible chemotherapy for Alzheimer′s disease[J].Acc Chem Res201548(5):1332-1339.DOI:10.1021/acs.accounts.5b00119.
[57]
Wu ZPalanimuthu DBraidy N,et al.Novel multifunctional iron chelators of the aroyl nicotinoyl hydrazone class that markedly enhance cellular NAD(+) /NADH ratios[J].Br J Pharmacol2020177(9):1967-1987.DOI:10.1111/bph.14963.
[58]
Tamtaji ORHeidari-Soureshjani RMirhosseini N,et al.Probiotic and selenium co-supplementation,and the effects on clinical,metabolic and genetic status in Alzheimer′s disease:a randomized,double-blind,controlled trial[J].Clin Nutr201938(6):2569-2575.DOI:10.1016/j.clnu.2018.11.034.
[59]
van Eersel JKe YD, Liu X,et al.Sodium selenate mitigates tau pathology,neurodegeneration, and functional deficits in Alzheimer′s disease models[J].Proc Natl Acad Sci USA, 2010107(31):13888-13893.DOI:10.1073/pnas.1009038107.
[60]
Kryscio RJAbner ELCaban-Holt A, et al.Association of antioxidant supplement use and dementia in the prevention of alzheimer′s disease by vitamin E and selenium trial (PREADViSE)[J].JAMA neurology201774(5):567-573.DOI:10.1001/jamaneurol.2016.5778.
[1] 刘思嘉, 张喜玲, 黄翠君, 刘云建. 铁死亡在常见肝脏疾病中的研究进展[J]. 中华普通外科学文献(电子版), 2022, 16(03): 231-235.
[2] 邵浩仁, 郭佳. 铁死亡的分子机制及其在前列腺癌治疗中的研究进展[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(03): 294-298.
[3] 莫建涛, 杨沛泽, 曹瑞奇, 马清涌, 王铮, 仵正, 周灿灿. 基于生物信息学分析构建肝内胆管细胞癌患者铁死亡相关lncRNA预后模型[J]. 中华肝脏外科手术学电子杂志, 2023, 12(02): 185-189.
[4] 刘成飞, 徐少强, 姚添, 黄河. 谷胱甘肽在结直肠癌增殖转移及诊疗中的研究进展[J]. 中华结直肠疾病电子杂志, 2022, 11(06): 506-510.
[5] 宋艳琪, 任雪景, 王文娟, 韩秋霞, 续玥, 庄凯婷, 肖拓, 蔡广研. 间充质干细胞对顺铂诱导的小鼠急性肾损伤中细胞铁死亡的作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 187-193.
[6] 李燕辰, 李建宁, 涂晓文, 李峰生. 核辐射导致急性肾损伤中铁死亡的作用研究进展[J]. 中华肾病研究电子杂志, 2022, 11(06): 338-341.
[7] 阿迪莱·阿卜杜热西提, 费奥, 邢晓雯, 谢胜强, 张睿, 兰晓娟, 程岗. 三种模拟创伤性脑损伤体外细胞模型的损伤特征比较[J]. 中华神经创伤外科电子杂志, 2023, 09(02): 69-75.
[8] 郭翃江, 符雪彩, 朱妍妍, 严之红, 王丽娜, 纪红. 基于影响因素的老年阿尔茨海默病认知功能障碍预测模型构建及电子化认知康复训练的应用价值[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(03): 156-161.
[9] 李敏, 刘云. 血清SAA、sNFL水平对老年阿尔茨海默病的预测价值分析[J]. 中华脑科疾病与康复杂志(电子版), 2022, 12(03): 157-161.
[10] 邓世栋, 刘凌志, 郭大勇, 王超, 黄忠欣, 张晖辉. 沉默SNHG1基因对膀胱癌细胞增殖、凋亡、迁移和铁死亡的影响[J]. 中华临床医师杂志(电子版), 2023, 17(07): 804-811.
[11] 谢艾伦, 郑冬燕, 蔡紫薇, 卢仁建, 彭永明, 张贺, 陈家隆. 鱼藤酮通过降低线粒体钙离子单向转运体蛋白表达促进多巴胺能神经元铁死亡[J]. 中华临床实验室管理电子杂志, 2023, 11(02): 71-78.
[12] 李民昌, 马长林. 自噬调控的细胞铁死亡及在肿瘤中影响的研究进展[J]. 中华诊断学电子杂志, 2023, 11(02): 140-144.
[13] 刘天姿, 王宝军. Toll样受体4在阿尔茨海默病中的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(04): 404-409.
[14] 夏禹, 刘寒, 朱瑞. 阿尔茨海默病及相关认知障碍疾病与早老素2基因相关性的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(03): 290-293.
[15] 宋蕾, 吴寒, 侯双兴, 楼菁菁, 刘兴党. 关于阿尔茨海默病中视网膜和视神经及相关物质的研究进展[J]. 中华脑血管病杂志(电子版), 2022, 16(05): 351-355.
阅读次数
全文


摘要