切换至 "中华医学电子期刊资源库"

中华诊断学电子杂志 ›› 2016, Vol. 04 ›› Issue (01) : 41 -44. doi: 10.3877/cma.j.issn.2095-655X.2016.01.012

所属专题: 专题评论 文献

爆炸冲击伤诊治研究

脑电功率谱分析在波尔山羊爆炸性颅脑冲击伤评估中的应用
李冠桦1, 王建民1, 李兵仓1,()   
  1. 1. 400042 重庆,第三军医大学大坪医院野战外科研究所 创伤烧伤与复合伤国家重点实验室
  • 收稿日期:2015-12-16 出版日期:2016-02-26
  • 通信作者: 李兵仓

The application of assessment of blast traumatic brain injury EEG power spectral analysis

Guanhua Li1, Janmin Wang1, Bingchang Li1,()   

  1. 1. Department of State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
  • Received:2015-12-16 Published:2016-02-26
  • Corresponding author: Bingchang Li
  • About author:
    Corresponding author: Li Binchang, Email:
引用本文:

李冠桦, 王建民, 李兵仓. 脑电功率谱分析在波尔山羊爆炸性颅脑冲击伤评估中的应用[J]. 中华诊断学电子杂志, 2016, 04(01): 41-44.

Guanhua Li, Janmin Wang, Bingchang Li. The application of assessment of blast traumatic brain injury EEG power spectral analysis[J]. Chinese Journal of Diagnostics(Electronic Edition), 2016, 04(01): 41-44.

目的

探讨脑电功率谱分析在波尔山羊爆炸性颅脑冲击伤评估中的应用。

方法

试验动物为波尔山羊,共15只。采用没有破片的TNT炸药来致伤试验波尔山羊,根据试验波尔山羊脑组织病理结果将试验动物分为3组,每组5只。对照组:未致伤的健康波尔山羊;有损伤组:致伤且病理显示有脑损伤的试验波尔山羊;无损伤组:致伤且病理显示无脑损伤的试验波尔山羊。记录试验动物伤前和伤后3h的脑电图,并对比1~30 Hz频段的脑电功率谱变化。计算δ、θ、α、β四个频率的功率值和(δ+θ)/(α+β)值。

结果

损伤组试验波尔山羊的脑电功率谱在3 Hz、4 Hz、5 Hz、6 Hz四个频率的功率值分别为(6.55±2.82)μV、(4.71±0.93)μV、(3.47±0.76)μV和(2.82±0.54)μV,对照组四个频率的功率值分别为(3.20±0.58)μV、(3.16±0.40)μV、(2.61±0.34)μV和(2.15±0.10)μV,两者比较差异有统计学意义(P值分别为0.031,0.009,0.049和0.026)。对照组的δ频段功率值为(3.20±0.99)μV,θ频段功率值为(2.27±0.64)μV,(δ+θ)/(α+β)值为(1.35±0.46)μV;损伤组的δ频段功率值为(9.81±1.06)μV,θ频段功率值为(4.97±1.41)μV,(δ+θ)/(α+β)值为(3.19±0.74)μV,与对照组比较差异有统计学意义(P值分别为0.045,0.048和0.024)。无损伤组δ频段功率值为(3.01±0.93)μV,θ频段功率值为(2.31±0.80)μV,(δ+θ)/(α+β)值为(1.47±0.32)μV,与对照组比较差异无统计学意义(P值分别为0.794,0.940和0.566)。

结论

脑电功率谱分析可以作为现场试验脑损伤评估的一种灵活方便准确的方法。

Objective

To determine whether EEG spectral analysis could be used for the analysis of animal models with blast traumatic brain injury.

Methods

We built animal traumatic model using TNT bomb without fragments.All the 15 goats were divided into 3 groups according their brain pathology change.We recorded EEG from the animals at the time before bomb exploring as well as 3 hours after blast.Then, we assessed EEG spectral differences from 1 to 30 Hz and compared EEG spectral with different groups, following with alculating the absolute power value in each band and (δ+ θ)/(α+ β) value.

Results

The injury group′s spectral power values with 3 Hz、4 Hz、5 Hz and 6 Hz were (6.55±2.82)μV、(4.71±0.93)μV、(3.47±0.76)μV and (2.82±0.54)μV.The healthy control group′s spectral power values with 3 Hz、4 Hz、5 Hz and 6 Hz were (3.20±0.58)μV、(3.16±0.40)μV、(2.66±0.34)μV and (2.15±0.10)μV.It′s of significant difference between the two groups, the P value was 0.031, 0.009, 0.049 and 0.026. The healthy control group′s spectral value of δ band was (3.20±0.99)μV and θ band was (2.27±0.64)μV and (δ+ θ)/(α+ β) was (1.35±0.46)μV.The injury group′s spectral value of δ band was (9.81±1.06)μV and θ band was (4.97±1.41)μV and (δ+ θ)/(α+ β) was (3.19±0.74)μV, which were significantly higher than the healthy control group(P=0.045, 0.048, 0.024). The no injury group′s spectral value of δ band was (3.01±0.93)μV and θ band was (2.31±0.80)μV and (δ+ θ)/(α+ β) was (1.47±0.32)μV, which were similar with the healthy control group (P=0.794, 0.940, 0.704).

Conclusion

EEG power spectral analysis can be used as a flexible tool to demonstrate the animal model with traumatic brain injury.

表1 各组试验动物不同频率的功率值 比较(每组n=5,μV,±s)
表2 各组试验动物各频带功率值(每组n=5,μV,±s)
[1]
Long JB,Bentley TL,Wessner KA, et al.Blast overpressure in rats:recreating a battlefield injury in the laboratory[J]. J Neurotrauma, 2009, 26(6): 827-840.
[2]
Bardin JC,Fins JJ,Katz DI, et al.Dissociations between behavioural and functional magnetic resonance imaging-based evaluations of cognitive function after brain injury[J]. Brain, 2011, 134(Pt 3): 769-782.
[3]
Yuan H,Liu T,Szarkowski R, et al.Negative covariation between task-related responses in alpha/beta-band activity and BOLD in human sensorimotor cortex:an EEG and fMRI study of motor imagery and movements[J]. NeuroImage, 2010, 49(3): 2596-2606.
[4]
陈燕伟,王向宇,谢成金. 定量脑电图对重型颅脑创伤长期意识障碍患者的清醒评估[J]. 中华神经外科杂志, 2011, 27(1): 56-58.
[5]
Goldfine AM,Victor JD,Conte MM, et al.Determination of aware ness in patients with severe brain injury using EEG power spectral analysis[J]. Clin Neurophysiol, 2011, 122(11): 2157-2168.
[6]
Kalayci T. Wavelet preprocessing for automated neuraml network detection of EEG spikes[J]. IEEE Eng Med Biol mag, 1995: 160-166.
[7]
黄远桂,吴声伶. 临床脑电图学[M]. 西安: 陕西科学技术出版社,1984: 153-156.
[8]
Leon-Carrion J,Martin-Rodriguez JF,Damas-Lopez J, et al.Brain function in the minimally conscious state:a quantitative neurophys iological study[J]. Clin Neurophysiol, 2008, 119(7): 1506-1514.
[9]
Thickbroom GW,Mastaglia FL,Carroll WM, et al.Source deriva tion: application to topographic mapping of visual evoked poten tials[J]. Electroencephalogr Clin Neurophysiol, 1984, 59(4): 279-285.
[10]
Schwartzman DJ,Kranczioch C. In the blink of an eye:the contribution of microsaccadic activity to the induced gamma band response[J]. Int J Psychophysiol, 2011, 79(1): 73-82.
[11]
Shackman AJ,McMenamin BW,Maxwell JS, et al. Identifying robust and sensitive frequency bands for interrogating neural oscilla tions[J]. Neuroimage, 2010, 51(4): 1319-1333.
No related articles found!
阅读次数
全文


摘要